Research Article
BibTex RIS Cite

A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM

Year 2018, Volume: 1 Issue: 2, 104 - 109, 31.07.2018

Abstract

In this paper we propose a topic on cryptography. It is a digital signature protocol. Indeed, we have improved the signature of Schnorr based on the problem of the discrete logarithm to make it more secure. We integrated the RSA algorithm into our scheme, which secures the signature process even if the signer uses the same signature key.

References

  • Adleman, L. M., Pomerance, C., & Rumely, R. S. (1983), On distinguishing prime numbers from composite numbers, Ann. Math, pp 173􀀀206.
  • Agrawal, M., Kayal, N., & Saxena, N. (2004), Primes in P, Annals of Mathematics , pp 781-793.
  • Den Boer, B. (1988), Diffie-Hellman is as strong as discrete log for certain primes, In Crypto.
  • El Gamal, T. (1985), A public key cryptosystem and a signature scheme based on discrete logarithm problem, IEEE Trans. Info. Theory , IT-31.
  • Khadir, O., (2010), New variant of ElGamal signature scheme, Int. J. Contemp. Math. SciencesVol. 5, no. 34.
  • Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. (1996) Handbook of applied cryptography, pp 72.
  • Pollard, J. M. (1975), A Monte Carlo method for factorization, BIT Numerical Mathematics, pp 331-334.
  • Rabin, M.O., (1978), Digital signatures and public-key functions as intractable as factorization, Technical Report MIT/LCS/TR-212.
  • Rivest, R., Shamir, A., & Adeleman, L. (1978), A method for obtaining digital signatures and public key cryptosystems, Communication of the ACM,Vol. no 21.
  • Schnorr, C.P., (1991), Efficient Signature Generation by Smart Cards, Journal of Cryptology, pp 161-174.
  • Shor & Peter (1997), Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM Journal on Computing, pp 1484-1509.
Year 2018, Volume: 1 Issue: 2, 104 - 109, 31.07.2018

Abstract

References

  • Adleman, L. M., Pomerance, C., & Rumely, R. S. (1983), On distinguishing prime numbers from composite numbers, Ann. Math, pp 173􀀀206.
  • Agrawal, M., Kayal, N., & Saxena, N. (2004), Primes in P, Annals of Mathematics , pp 781-793.
  • Den Boer, B. (1988), Diffie-Hellman is as strong as discrete log for certain primes, In Crypto.
  • El Gamal, T. (1985), A public key cryptosystem and a signature scheme based on discrete logarithm problem, IEEE Trans. Info. Theory , IT-31.
  • Khadir, O., (2010), New variant of ElGamal signature scheme, Int. J. Contemp. Math. SciencesVol. 5, no. 34.
  • Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. (1996) Handbook of applied cryptography, pp 72.
  • Pollard, J. M. (1975), A Monte Carlo method for factorization, BIT Numerical Mathematics, pp 331-334.
  • Rabin, M.O., (1978), Digital signatures and public-key functions as intractable as factorization, Technical Report MIT/LCS/TR-212.
  • Rivest, R., Shamir, A., & Adeleman, L. (1978), A method for obtaining digital signatures and public key cryptosystems, Communication of the ACM,Vol. no 21.
  • Schnorr, C.P., (1991), Efficient Signature Generation by Smart Cards, Journal of Cryptology, pp 161-174.
  • Shor & Peter (1997), Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM Journal on Computing, pp 1484-1509.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Leila Zehhafi

Omar Khadir This is me

Publication Date July 31, 2018
Submission Date May 16, 2018
Acceptance Date August 1, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Zehhafi, L., & Khadir, O. (2018). A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM. Journal of Universal Mathematics, 1(2), 104-109.
AMA Zehhafi L, Khadir O. A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM. JUM. July 2018;1(2):104-109.
Chicago Zehhafi, Leila, and Omar Khadir. “A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM”. Journal of Universal Mathematics 1, no. 2 (July 2018): 104-9.
EndNote Zehhafi L, Khadir O (July 1, 2018) A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM. Journal of Universal Mathematics 1 2 104–109.
IEEE L. Zehhafi and O. Khadir, “A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM”, JUM, vol. 1, no. 2, pp. 104–109, 2018.
ISNAD Zehhafi, Leila - Khadir, Omar. “A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM”. Journal of Universal Mathematics 1/2 (July 2018), 104-109.
JAMA Zehhafi L, Khadir O. A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM. JUM. 2018;1:104–109.
MLA Zehhafi, Leila and Omar Khadir. “A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM”. Journal of Universal Mathematics, vol. 1, no. 2, 2018, pp. 104-9.
Vancouver Zehhafi L, Khadir O. A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM. JUM. 2018;1(2):104-9.