A SECURE VARIANT OF SCHNORR SIGNATURE USING THE RSA ALGORITHM
Year 2018,
Volume: 1 Issue: 2, 104 - 109, 31.07.2018
Leila Zehhafi
,
Omar Khadir
Abstract
In this paper we propose a topic on cryptography. It is a digital signature protocol. Indeed, we have improved the signature of Schnorr based on the problem of the discrete logarithm to make it more secure. We integrated the RSA algorithm into our scheme, which secures the signature process even if the signer uses the same signature key.
References
- Adleman, L. M., Pomerance, C., & Rumely, R. S. (1983), On distinguishing prime numbers from composite numbers, Ann. Math, pp 173206.
- Agrawal, M., Kayal, N., & Saxena, N. (2004), Primes in P, Annals of Mathematics , pp 781-793.
- Den Boer, B. (1988), Diffie-Hellman is as strong as discrete log for certain primes, In Crypto.
- El Gamal, T. (1985), A public key cryptosystem and a signature scheme based on discrete logarithm problem, IEEE Trans. Info. Theory , IT-31.
- Khadir, O., (2010), New variant of ElGamal signature scheme, Int. J. Contemp. Math. SciencesVol. 5, no. 34.
- Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. (1996) Handbook of applied cryptography, pp 72.
- Pollard, J. M. (1975), A Monte Carlo method for factorization, BIT Numerical Mathematics, pp 331-334.
- Rabin, M.O., (1978), Digital signatures and public-key functions as intractable as factorization, Technical Report MIT/LCS/TR-212.
- Rivest, R., Shamir, A., & Adeleman, L. (1978), A method for obtaining digital signatures and public key cryptosystems, Communication of the ACM,Vol. no 21.
- Schnorr, C.P., (1991), Efficient Signature Generation by Smart Cards, Journal of Cryptology, pp 161-174.
- Shor & Peter (1997), Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM Journal on Computing, pp 1484-1509.
Year 2018,
Volume: 1 Issue: 2, 104 - 109, 31.07.2018
Leila Zehhafi
,
Omar Khadir
References
- Adleman, L. M., Pomerance, C., & Rumely, R. S. (1983), On distinguishing prime numbers from composite numbers, Ann. Math, pp 173206.
- Agrawal, M., Kayal, N., & Saxena, N. (2004), Primes in P, Annals of Mathematics , pp 781-793.
- Den Boer, B. (1988), Diffie-Hellman is as strong as discrete log for certain primes, In Crypto.
- El Gamal, T. (1985), A public key cryptosystem and a signature scheme based on discrete logarithm problem, IEEE Trans. Info. Theory , IT-31.
- Khadir, O., (2010), New variant of ElGamal signature scheme, Int. J. Contemp. Math. SciencesVol. 5, no. 34.
- Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. (1996) Handbook of applied cryptography, pp 72.
- Pollard, J. M. (1975), A Monte Carlo method for factorization, BIT Numerical Mathematics, pp 331-334.
- Rabin, M.O., (1978), Digital signatures and public-key functions as intractable as factorization, Technical Report MIT/LCS/TR-212.
- Rivest, R., Shamir, A., & Adeleman, L. (1978), A method for obtaining digital signatures and public key cryptosystems, Communication of the ACM,Vol. no 21.
- Schnorr, C.P., (1991), Efficient Signature Generation by Smart Cards, Journal of Cryptology, pp 161-174.
- Shor & Peter (1997), Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM Journal on Computing, pp 1484-1509.