Research Article
BibTex RIS Cite

ON INTERVAL VALUED INTUITIONISTIC FUZZY PAIRS

Year 2018, Volume: 1 Issue: 3 - To memory of Prof. RNDr. Beloslav Rieˇcan, DrSc., 261 - 268, 24.10.2018

Abstract

As was mentioned in [9], the first researches, related to Intuitionistic Fuzzy Sets (IFSs) started in 1983 and from the beginning, the concept of Intuitionistic Fuzzy Pair (IFP) had started to be
used. As we mentioned in [9], a lot of our colleagues working in the area of the intuitionistic fuzziness, used it without a special definition in many of their publications, using different names:
IFP, intuitionistic fuzzy couple, intuitionistic fuzzy value and others. In the mentioned paper, we proposed to the researchers in the area of the intuitionistic fuzziness to use only one name for the concept.

References

  • Angelova, N., M. Stoenchev. Intuitionistic fuzzy conjunctions and disjunctions from first type, Annual of “Informatics” Section, Union of Scientists in Bulgaria, Vol. 8, 2015/2016, 1-17.Atanassov, K. Intuitionistic Fuzzy Sets, Springer, Heldelberg, 1999.Atanassov, K. On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.Atanassov, K. Intuitionistic fuzzy logics as tools for evaluation of Data Mining processes,Knowledge-Based Systems, Vol. 80, 2015, 122-130.Atanassov, K. Intuitionistic fuzzy modal operators of second type over interval-valued intuitionistic fuzzy sets. Part 1, Notes on Intuitionistic Fuzzy Sets, Vol. 24, 2018, No. 2, 8-17. 7Atanassov, K. Intuitionistic fuzzy modal operators of second type over interval-valued intuitionistic fuzzy sets. Part 2, Notes on Intuitionistic Fuzzy Sets, Vol. 24, 2018, No. 3 (in press).Atanassov, K. On the Most Extended Modal Operator of First Type over Interval-Valued Intuitionistic Fuzzy Sets. Mathematics 2018, 6, 123; doi:10.3390/math6070123Atanassov, K.On the two most extended modal types of operators defined over interval valued intuitionistic fuzzy sets. Annals of Fuzzy Mathematics and Informatics (in press).Atanassov, K., E. Szmidt, J. Kacprzyk. On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, Vol. 19, 2013, No. 3, 1-13.Atanassov, K., Szmidt, E., Kacprzyk, J., Vassilev, P. On intuitionistic fuzzy pairs of n-th type. Issues in IFSs and GNs, 13, 2017, ISBN:978-83-61551-21-8, 136-142.Çuvalcıoğlu, G., Some properties of E ; operator. Advanced Studies in Contemporary Mathematics, Vol. 14, 2007, No. 2, 305-310.Feys R. Modal Logics, Gauthier-Villars, Paris, 1965.Szmidt, E., Distances and Similarities in Intuitionistic Fuzzy Sets, Springer, Berlin, 2014.Vassilev, P., Ribagin, S., Kacprzyk, J. (2018) A remark on intuitionistic fuzzy implications. Notes on Intuitionistic Fuzzy Sets, 24 (2), 1-7, doi: 10.7546/nifs.2018.24.2.1-78
Year 2018, Volume: 1 Issue: 3 - To memory of Prof. RNDr. Beloslav Rieˇcan, DrSc., 261 - 268, 24.10.2018

Abstract

References

  • Angelova, N., M. Stoenchev. Intuitionistic fuzzy conjunctions and disjunctions from first type, Annual of “Informatics” Section, Union of Scientists in Bulgaria, Vol. 8, 2015/2016, 1-17.Atanassov, K. Intuitionistic Fuzzy Sets, Springer, Heldelberg, 1999.Atanassov, K. On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.Atanassov, K. Intuitionistic fuzzy logics as tools for evaluation of Data Mining processes,Knowledge-Based Systems, Vol. 80, 2015, 122-130.Atanassov, K. Intuitionistic fuzzy modal operators of second type over interval-valued intuitionistic fuzzy sets. Part 1, Notes on Intuitionistic Fuzzy Sets, Vol. 24, 2018, No. 2, 8-17. 7Atanassov, K. Intuitionistic fuzzy modal operators of second type over interval-valued intuitionistic fuzzy sets. Part 2, Notes on Intuitionistic Fuzzy Sets, Vol. 24, 2018, No. 3 (in press).Atanassov, K. On the Most Extended Modal Operator of First Type over Interval-Valued Intuitionistic Fuzzy Sets. Mathematics 2018, 6, 123; doi:10.3390/math6070123Atanassov, K.On the two most extended modal types of operators defined over interval valued intuitionistic fuzzy sets. Annals of Fuzzy Mathematics and Informatics (in press).Atanassov, K., E. Szmidt, J. Kacprzyk. On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, Vol. 19, 2013, No. 3, 1-13.Atanassov, K., Szmidt, E., Kacprzyk, J., Vassilev, P. On intuitionistic fuzzy pairs of n-th type. Issues in IFSs and GNs, 13, 2017, ISBN:978-83-61551-21-8, 136-142.Çuvalcıoğlu, G., Some properties of E ; operator. Advanced Studies in Contemporary Mathematics, Vol. 14, 2007, No. 2, 305-310.Feys R. Modal Logics, Gauthier-Villars, Paris, 1965.Szmidt, E., Distances and Similarities in Intuitionistic Fuzzy Sets, Springer, Berlin, 2014.Vassilev, P., Ribagin, S., Kacprzyk, J. (2018) A remark on intuitionistic fuzzy implications. Notes on Intuitionistic Fuzzy Sets, 24 (2), 1-7, doi: 10.7546/nifs.2018.24.2.1-78
There are 1 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Krassimir Atanassov

Peter Vassilev This is me

Eulalia Szmidt This is me

Janusz Kacprzyk This is me

Publication Date October 24, 2018
Submission Date August 24, 2018
Acceptance Date October 23, 2018
Published in Issue Year 2018 Volume: 1 Issue: 3 - To memory of Prof. RNDr. Beloslav Rieˇcan, DrSc.

Cite

APA Atanassov, K., Vassilev, P., Szmidt, E., Kacprzyk, J. (2018). ON INTERVAL VALUED INTUITIONISTIC FUZZY PAIRS. Journal of Universal Mathematics, 1(3), 261-268.
AMA Atanassov K, Vassilev P, Szmidt E, Kacprzyk J. ON INTERVAL VALUED INTUITIONISTIC FUZZY PAIRS. JUM. October 2018;1(3):261-268.
Chicago Atanassov, Krassimir, Peter Vassilev, Eulalia Szmidt, and Janusz Kacprzyk. “ON INTERVAL VALUED INTUITIONISTIC FUZZY PAIRS”. Journal of Universal Mathematics 1, no. 3 (October 2018): 261-68.
EndNote Atanassov K, Vassilev P, Szmidt E, Kacprzyk J (October 1, 2018) ON INTERVAL VALUED INTUITIONISTIC FUZZY PAIRS. Journal of Universal Mathematics 1 3 261–268.
IEEE K. Atanassov, P. Vassilev, E. Szmidt, and J. Kacprzyk, “ON INTERVAL VALUED INTUITIONISTIC FUZZY PAIRS”, JUM, vol. 1, no. 3, pp. 261–268, 2018.
ISNAD Atanassov, Krassimir et al. “ON INTERVAL VALUED INTUITIONISTIC FUZZY PAIRS”. Journal of Universal Mathematics 1/3 (October 2018), 261-268.
JAMA Atanassov K, Vassilev P, Szmidt E, Kacprzyk J. ON INTERVAL VALUED INTUITIONISTIC FUZZY PAIRS. JUM. 2018;1:261–268.
MLA Atanassov, Krassimir et al. “ON INTERVAL VALUED INTUITIONISTIC FUZZY PAIRS”. Journal of Universal Mathematics, vol. 1, no. 3, 2018, pp. 261-8.
Vancouver Atanassov K, Vassilev P, Szmidt E, Kacprzyk J. ON INTERVAL VALUED INTUITIONISTIC FUZZY PAIRS. JUM. 2018;1(3):261-8.