Research Article
BibTex RIS Cite

INCLUSION THEOREMS IN THE FUNCTION SPACES WITH WIGNER TRANSFORM

Year 2022, Volume: 5 Issue: 2, 95 - 104, 31.07.2022
https://doi.org/10.33773/jum.1134775

Abstract

In this paper, we consider inclusion relations of $CW_{\omega _{1},\omega
_{2},\omega _{3},\omega _{4}}^{p,q,r,s,\tau }\left(
%TCIMACRO{\U{211d} }%
%BeginExpansion
\mathbb{R}
%EndExpansion
\right) $ spaces of functions whose Wigner transforms are in weighted
Lebesgue spaces. We then discuss compact embeddings theorems between these
function spaces.

Supporting Institution

Giresun University

Project Number

FEN-BAPC-150219-01

References

  • P. Boggiatto, G. De Donno, A. Oliaro, A class of quadratic time- frequency representations based on the short- time Fourier transform, Oper Theory, 172, 235-249 (2007).
  • P. Boggiatto, G. De Donno, A. Oliaro, Time- frequency representations of Wigner type and pseudo- differential operators, Trans Amer Math Soc, 362, 4955-4981 (2010).
  • M. Duman, O. Kulak. On function spaces with fractional wavelet transform, Montes Taurus J. Pure Appl. Math. 3 (3), 122–134 (2021).
  • H.G. Feichtinger, A.T. Gürkanlı, On a family of weighted convolution algebras, Internat. J. Math. Sci. 13(3), 517-526 (1990).
  • R. H. Fischer, A.T. Gürkanlı, T.S. Liu, On a family of weighted spaces, Math. Slovaca, 46(1), 71-82 (1996).
  • K. Grochenig, Foundations of Time-Frequency Analysis, Birkhauser, Boston, 359s (2001).[7] A.T. Gurkanlı, Compact embeddings of the spaces Apw,Rd, Taiwanese Journal of Mathematics, 12(7), 1757-1767 (2008).
  • O. Kulak, A.T. Gürkanlı, On function spaces with wavelet transform in LpωRd × R+, Hacettepe Journal of Mathematics and Statistics, 40(2), 163-177 (2011).
  • O. Kulak, A. Ömerbeyoğlu, On function spaces characterized by the Wigner transform, Journal of Universal Mathematics, 4(2), 188-200 (2021).
  • O. Kulak, Compact embedding theorems for the space of functions with wavelet transform in amalgam spaces, European Journal of Science and Technology, 28, 568 572 (2021).
  • O. Kulak, Compact embedding and inclusion theorems for weighted function spaces with wavelet transform, Lectures of Pure Mathematics on Algebra Analysis and Geometry, Artikel Academy, 41-52 (2021).
  • H. Reither, Classical Harmonic Analysis and Locally Compact Group, Oxford Universty Pres, Oxford, 200s (1968).
  • A. Sandıkcı, A.T. Gürkanlı, The space ΩpmRd and some properties, Ukrainian Mathematical Journal, 58(1), 155-162 (2006).
  • A. Sandıkcı, Continuity of Wigner-type operators on Lorentz spaces and Lorentz mixed normed modulation spaces, Turkish Journal of Mathematics, 38, 728– 745 (201
Year 2022, Volume: 5 Issue: 2, 95 - 104, 31.07.2022
https://doi.org/10.33773/jum.1134775

Abstract

Project Number

FEN-BAPC-150219-01

References

  • P. Boggiatto, G. De Donno, A. Oliaro, A class of quadratic time- frequency representations based on the short- time Fourier transform, Oper Theory, 172, 235-249 (2007).
  • P. Boggiatto, G. De Donno, A. Oliaro, Time- frequency representations of Wigner type and pseudo- differential operators, Trans Amer Math Soc, 362, 4955-4981 (2010).
  • M. Duman, O. Kulak. On function spaces with fractional wavelet transform, Montes Taurus J. Pure Appl. Math. 3 (3), 122–134 (2021).
  • H.G. Feichtinger, A.T. Gürkanlı, On a family of weighted convolution algebras, Internat. J. Math. Sci. 13(3), 517-526 (1990).
  • R. H. Fischer, A.T. Gürkanlı, T.S. Liu, On a family of weighted spaces, Math. Slovaca, 46(1), 71-82 (1996).
  • K. Grochenig, Foundations of Time-Frequency Analysis, Birkhauser, Boston, 359s (2001).[7] A.T. Gurkanlı, Compact embeddings of the spaces Apw,Rd, Taiwanese Journal of Mathematics, 12(7), 1757-1767 (2008).
  • O. Kulak, A.T. Gürkanlı, On function spaces with wavelet transform in LpωRd × R+, Hacettepe Journal of Mathematics and Statistics, 40(2), 163-177 (2011).
  • O. Kulak, A. Ömerbeyoğlu, On function spaces characterized by the Wigner transform, Journal of Universal Mathematics, 4(2), 188-200 (2021).
  • O. Kulak, Compact embedding theorems for the space of functions with wavelet transform in amalgam spaces, European Journal of Science and Technology, 28, 568 572 (2021).
  • O. Kulak, Compact embedding and inclusion theorems for weighted function spaces with wavelet transform, Lectures of Pure Mathematics on Algebra Analysis and Geometry, Artikel Academy, 41-52 (2021).
  • H. Reither, Classical Harmonic Analysis and Locally Compact Group, Oxford Universty Pres, Oxford, 200s (1968).
  • A. Sandıkcı, A.T. Gürkanlı, The space ΩpmRd and some properties, Ukrainian Mathematical Journal, 58(1), 155-162 (2006).
  • A. Sandıkcı, Continuity of Wigner-type operators on Lorentz spaces and Lorentz mixed normed modulation spaces, Turkish Journal of Mathematics, 38, 728– 745 (201
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Öznur Kulak 0000-0003-1433-3159

Arzu Ömerbeyoğlu 0000-0001-5607-2570

Project Number FEN-BAPC-150219-01
Publication Date July 31, 2022
Submission Date June 23, 2022
Acceptance Date July 25, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Kulak, Ö., & Ömerbeyoğlu, A. (2022). INCLUSION THEOREMS IN THE FUNCTION SPACES WITH WIGNER TRANSFORM. Journal of Universal Mathematics, 5(2), 95-104. https://doi.org/10.33773/jum.1134775
AMA Kulak Ö, Ömerbeyoğlu A. INCLUSION THEOREMS IN THE FUNCTION SPACES WITH WIGNER TRANSFORM. JUM. July 2022;5(2):95-104. doi:10.33773/jum.1134775
Chicago Kulak, Öznur, and Arzu Ömerbeyoğlu. “INCLUSION THEOREMS IN THE FUNCTION SPACES WITH WIGNER TRANSFORM”. Journal of Universal Mathematics 5, no. 2 (July 2022): 95-104. https://doi.org/10.33773/jum.1134775.
EndNote Kulak Ö, Ömerbeyoğlu A (July 1, 2022) INCLUSION THEOREMS IN THE FUNCTION SPACES WITH WIGNER TRANSFORM. Journal of Universal Mathematics 5 2 95–104.
IEEE Ö. Kulak and A. Ömerbeyoğlu, “INCLUSION THEOREMS IN THE FUNCTION SPACES WITH WIGNER TRANSFORM”, JUM, vol. 5, no. 2, pp. 95–104, 2022, doi: 10.33773/jum.1134775.
ISNAD Kulak, Öznur - Ömerbeyoğlu, Arzu. “INCLUSION THEOREMS IN THE FUNCTION SPACES WITH WIGNER TRANSFORM”. Journal of Universal Mathematics 5/2 (July 2022), 95-104. https://doi.org/10.33773/jum.1134775.
JAMA Kulak Ö, Ömerbeyoğlu A. INCLUSION THEOREMS IN THE FUNCTION SPACES WITH WIGNER TRANSFORM. JUM. 2022;5:95–104.
MLA Kulak, Öznur and Arzu Ömerbeyoğlu. “INCLUSION THEOREMS IN THE FUNCTION SPACES WITH WIGNER TRANSFORM”. Journal of Universal Mathematics, vol. 5, no. 2, 2022, pp. 95-104, doi:10.33773/jum.1134775.
Vancouver Kulak Ö, Ömerbeyoğlu A. INCLUSION THEOREMS IN THE FUNCTION SPACES WITH WIGNER TRANSFORM. JUM. 2022;5(2):95-104.