Research Article
BibTex RIS Cite

Clustering Assessment Tendency for Big Data Analytics Extract Useful Knowledge

Year 2019, Volume: 14, 25 - 32, 27.03.2019

Abstract

References

  • - Bezdek, J.C., Hathaway, R., Huband, J. (2007). Visual assessment of clustering tendency for rectangular dissimilarity matrices. IEEE Transactions on Fuzzy Systems, 15(5) 890–903
  • - Bezdek, J. C., and Hathaway, R. J. (2005). bigVAT: visual assessment of cluster tendency for large data set, in Pattern Recognition, 38 (11), pp. 1875-1886
  • - Bezdek, J.C., and Hathaway, R. J. (2002) . VAT: A tool for visual assessment of (cluster) tendency, in Proc. Intl. Joint Conf. on Neural Networks. Honohulu, HI, pp. 2225-2230.
  • - Boyd, D., and Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society 15(5): 662-679.
  • - Ekbia, H., Mattioli, M., Kouper, I. (2015). Big data, bigger dilemmas: A critical review. Journal of the Association for Information Science and Technology , 66(8), 1523-1545.
  • - Fujimaki, R., and Morinaga, S. (2012). The Most Advanced Data Mining of the Big Data Era, Advanced technologies to support big data processing, 7 (2)
  • - Han, J., Jian, P., and Micheline, K. (2011). Data Mining: Concepts and Techniques. Burlington, MA: Elsevier.
  • - Hastie, T., James, G., Witten, D., and Tibshirani, R.( 2013). An Introduction to Statistical Learning with Applications in R. Springer.
  • - Hathaway, R., Bezdek, J. C., and Huband, J. M. (2006). Scalable Visual Assessment of Cluster Tendency, in Pattern Recognition, 39, pp. 1315-1324
  • - Havens, T. C. and Bezdek, J. C. (2012). An efficient formulation of the improved visual assessment of cluster tendency (iVAT) algorithm, Knowledge and Data Engineering, IEEE Transactions, 24 (5), pp. 813–822
  • - Huband, J. M., Bezdek, J. C., and Hathaway, R. (2004). Revised Visual assessment of (cluster) tendency (reVAT), in Proc. Of NAFIPS, pp. 101-104
  • - Katal, A., Wazid, M., and Goudar, R.H. (2013). Big Data: Issues, Challenges, Tools and Good Practices, IEEE Spectrum, 404-409
  • - Kendall, M., and Gibbons, J.D. (1990). Rank Correlation Methods. Oxford University Press, New York
  • - Pakhira, M. K. (2010). Out-of-Core Assessment of Clustering Tendency for Large Data Sets,” in Proc. of the nd Int. Conf. on Advance Computing and Communications, pp. 29-33
  • - Sedkaoui, S. (2018a). Data analytics and big data, London: ISTE-Wiley.
  • - Sedkaoui, S. (2018b). Big Data Analytics for Entrepreneurial Success: Emerging Research and Opportunities, New York: IGI Global.
  • - Sedkaoui, S. (2018c). Statistical and Computational Needs for Big Data Challenges. In A. Al Mazari (Ed.), Big Data Analytics in HIV/AIDS Research (pp. 21-53). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-3203-3.ch002
  • - Sedkaoui, S., and Gottinger, H-W. (2017). The Internet, Data Analytics and Big Data, In Internet Economics: Models, Mechanisms and Management (pp. 92-105), Hans-Werner GOTTINGER: by eBook Bentham science.
  • - Wang, L., Nguyen, T., Bezdek, J., Leckie, C., and Ramamohanarao, K. (2010). iVAT and aVAT: enhanced visual analysis for cluster tendency assessment, in Proc. PAKDD, Hyderabad, India, Jun. 2010.

Clustering Assessment Tendency for Big Data Analytics Extract Useful Knowledge

Year 2019, Volume: 14, 25 - 32, 27.03.2019

Abstract

Abstract

The
clustering method is one of the important methods that can be used to analyze
the big volume of data that should be grouped accordingly as much as possible.
Depending on the characteristics of the data available today and to deal with
big data challenges, several clustering methods have been developed. But, in
many situations, we cannot know a priori the number of clusters in the dataset.
This refers to an important problem in cluster analysis or determining the
numbers of clusters. In this context, this paper describes some clustering
methods, with special attention to the Visual Assessment Tendency (VAT)
algorithm as one of the known methods. This algorithm is implemented in
advanced technologies to analyze big data.

Keywords: Big data, clustering tendency, k-means, knowledge, visual assessment algorithm.







JEL Codes: C10, C38

References

  • - Bezdek, J.C., Hathaway, R., Huband, J. (2007). Visual assessment of clustering tendency for rectangular dissimilarity matrices. IEEE Transactions on Fuzzy Systems, 15(5) 890–903
  • - Bezdek, J. C., and Hathaway, R. J. (2005). bigVAT: visual assessment of cluster tendency for large data set, in Pattern Recognition, 38 (11), pp. 1875-1886
  • - Bezdek, J.C., and Hathaway, R. J. (2002) . VAT: A tool for visual assessment of (cluster) tendency, in Proc. Intl. Joint Conf. on Neural Networks. Honohulu, HI, pp. 2225-2230.
  • - Boyd, D., and Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society 15(5): 662-679.
  • - Ekbia, H., Mattioli, M., Kouper, I. (2015). Big data, bigger dilemmas: A critical review. Journal of the Association for Information Science and Technology , 66(8), 1523-1545.
  • - Fujimaki, R., and Morinaga, S. (2012). The Most Advanced Data Mining of the Big Data Era, Advanced technologies to support big data processing, 7 (2)
  • - Han, J., Jian, P., and Micheline, K. (2011). Data Mining: Concepts and Techniques. Burlington, MA: Elsevier.
  • - Hastie, T., James, G., Witten, D., and Tibshirani, R.( 2013). An Introduction to Statistical Learning with Applications in R. Springer.
  • - Hathaway, R., Bezdek, J. C., and Huband, J. M. (2006). Scalable Visual Assessment of Cluster Tendency, in Pattern Recognition, 39, pp. 1315-1324
  • - Havens, T. C. and Bezdek, J. C. (2012). An efficient formulation of the improved visual assessment of cluster tendency (iVAT) algorithm, Knowledge and Data Engineering, IEEE Transactions, 24 (5), pp. 813–822
  • - Huband, J. M., Bezdek, J. C., and Hathaway, R. (2004). Revised Visual assessment of (cluster) tendency (reVAT), in Proc. Of NAFIPS, pp. 101-104
  • - Katal, A., Wazid, M., and Goudar, R.H. (2013). Big Data: Issues, Challenges, Tools and Good Practices, IEEE Spectrum, 404-409
  • - Kendall, M., and Gibbons, J.D. (1990). Rank Correlation Methods. Oxford University Press, New York
  • - Pakhira, M. K. (2010). Out-of-Core Assessment of Clustering Tendency for Large Data Sets,” in Proc. of the nd Int. Conf. on Advance Computing and Communications, pp. 29-33
  • - Sedkaoui, S. (2018a). Data analytics and big data, London: ISTE-Wiley.
  • - Sedkaoui, S. (2018b). Big Data Analytics for Entrepreneurial Success: Emerging Research and Opportunities, New York: IGI Global.
  • - Sedkaoui, S. (2018c). Statistical and Computational Needs for Big Data Challenges. In A. Al Mazari (Ed.), Big Data Analytics in HIV/AIDS Research (pp. 21-53). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-3203-3.ch002
  • - Sedkaoui, S., and Gottinger, H-W. (2017). The Internet, Data Analytics and Big Data, In Internet Economics: Models, Mechanisms and Management (pp. 92-105), Hans-Werner GOTTINGER: by eBook Bentham science.
  • - Wang, L., Nguyen, T., Bezdek, J., Leckie, C., and Ramamohanarao, K. (2010). iVAT and aVAT: enhanced visual analysis for cluster tendency assessment, in Proc. PAKDD, Hyderabad, India, Jun. 2010.
There are 19 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Soraya Sedkaoui 0000-0002-7134-2871

Salim Moualdi This is me 0000-0002-7134-2871

Publication Date March 27, 2019
Published in Issue Year 2019 Volume: 14

Cite

APA Sedkaoui, S., & Moualdi, S. (2019). Clustering Assessment Tendency for Big Data Analytics Extract Useful Knowledge. Yaşar Üniversitesi E-Dergisi, 14, 25-32.
AMA Sedkaoui S, Moualdi S. Clustering Assessment Tendency for Big Data Analytics Extract Useful Knowledge. Yaşar Üniversitesi E-Dergisi. March 2019;14:25-32.
Chicago Sedkaoui, Soraya, and Salim Moualdi. “Clustering Assessment Tendency for Big Data Analytics Extract Useful Knowledge”. Yaşar Üniversitesi E-Dergisi 14, March (March 2019): 25-32.
EndNote Sedkaoui S, Moualdi S (March 1, 2019) Clustering Assessment Tendency for Big Data Analytics Extract Useful Knowledge. Yaşar Üniversitesi E-Dergisi 14 25–32.
IEEE S. Sedkaoui and S. Moualdi, “Clustering Assessment Tendency for Big Data Analytics Extract Useful Knowledge”, Yaşar Üniversitesi E-Dergisi, vol. 14, pp. 25–32, 2019.
ISNAD Sedkaoui, Soraya - Moualdi, Salim. “Clustering Assessment Tendency for Big Data Analytics Extract Useful Knowledge”. Yaşar Üniversitesi E-Dergisi 14 (March 2019), 25-32.
JAMA Sedkaoui S, Moualdi S. Clustering Assessment Tendency for Big Data Analytics Extract Useful Knowledge. Yaşar Üniversitesi E-Dergisi. 2019;14:25–32.
MLA Sedkaoui, Soraya and Salim Moualdi. “Clustering Assessment Tendency for Big Data Analytics Extract Useful Knowledge”. Yaşar Üniversitesi E-Dergisi, vol. 14, 2019, pp. 25-32.
Vancouver Sedkaoui S, Moualdi S. Clustering Assessment Tendency for Big Data Analytics Extract Useful Knowledge. Yaşar Üniversitesi E-Dergisi. 2019;14:25-32.