Research Article
BibTex RIS Cite

Diyabet ve Aterosklerozda İnflamasyon: Makro ve Mikro Besin Ögeleri ile NLRP3 İnflamazomu İlişkisi

Year 2021, Volume: 11 Issue: 2, 336 - 349, 01.08.2021

Abstract

Tip II diyabet ve kardiyovasküler hastalıklar gibi kronik hastalıklar, toplumda giderek artan temel sağlık sorunları haline gelmiştir. Son yıllarda kronik hastalıklarla birlikte bunlara bağlı mortalitenin arttığı bildirilmiştir. Kronik hastalıkların nedenleri ve sonuçları araştırıldığında çeşitli etmenler ile birlikte genel olarak inflamasyonun bu hastalıklara eşlik ettiği ve kronik hastalıkların da hücresel veya metabolik inflamasyon oluşturduğu bildirilmektedir. Ancak bunun tam tersinin, yani inflamasyonun da kronik hastalık oluşumuna ve ilerlemesine etki ettiği düşünülmektedir. Bu sebeple, inflamatuar yanıtta görevli hücre içi reseptörlerden biri olan NLRP3 (NOD-like receptor family pyrin domain-containing protein 3) ve oluşturduğu inflamazom kompleksin hastalıklarla ilişkili olduğu düşünülmektedir. İnflamatuar yanıt oluşumunda patojen ile ilişkili uyarılar veya patojen dışı uyarılar NLRP3 inflamazomunu indüklenmekte veya baskılanmaktadır. Patojen dışı hücresel uyarılar olarak nitelendirilen, hücre sinyalizyonundaki değişimler, toksinler, oksidatif stres, endoplazmik retikulm stresi, mitokondri fonksiyon bozukluğu, lizozom fonksiyon bozukluğu ve hiperglisemi, lipotoksisite, hücresel ATP gibi diyetsel etmenler NLRP3 inflamazomunu regüle eden ve beslenme ile ilişkilendirilen nedenlerden biri olarak gösterilmektedir. Bu sebeple tip II diyabet ve ateroskleroz gibi hastalıklarda NLRP3 aracılı inflamasyonun modüle edilmesinde beslenmenin rolü olduğu düşünülmektedir. Dolayısıyla diyetin içeriği, makro ve mikro besin ögesi gibi etmenlerin hücresel inflamatuarı etkilediği düşünülmektedir. Bu bağlamda yapılan çalışmalarda yağ asitleri, kolesterol, fruktoz ve sodyum gibi besin ögelerinin, NLRP3 inflamazomu ile ilişkili olduğu bildirilmiştir. Bu nedenle bu derleme diyetin temel bileşimi olan makro ve mikro besin ögelerinin NLRP3 inflamazomuna etkisine ve kronik hastalıklarla olan ilişkisine genel bir bakış açısı sunmak amacıyla yazılmıştır.

References

  • 1. Allen L. Are we facing a noncommunicable disease pandemic? J Epidemiol Glob Health, 7 (1): 5-9, 2017.
  • 2. Stylianou E. Epigenetics of chronic inflammatory diseases. J Inflamm Res, 12: 1-14, 2019.
  • 3. WHO. Noncommunicable diseases. 2019. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases; Accessed: 04.02.2019.
  • 4. Hotamisligil GS. Inflammation and metabolic disorders. Nature, 444 (7121): 860-7, 2006.
  • 5. Schroder K, Tschopp J. The inflammasomes. Cell, 140 (6): 821-32, 2010.
  • 6. Amin J, Boche D, Rakic S. What do we know about the inflammasome in humans? Brain Pathol, 27 (2): 192-204, 2017.
  • 7. Karasawa T, Takahashi M. Saturated fatty acid-crystals activate NLRP3 inflammasome. Aging (Albany NY), 11 (6): 1613-4, 2019.
  • 8. Bullon P, Cano-Garcia FJ, Alcocer-Gomez E, Varela-Lopez A, Roman-Malo L, Ruiz-Salmeron RJ, et al. Could NLRP3-Inflammasome Be a Cardiovascular Risk Biomarker in Acute Myocardial Infarction Patients? Antioxid Redox Signal, 27 (5): 269-75, 2017.
  • 9. Wen H, Ting JP, O'Neill LA. A role for the NLRP3 inflammasome in metabolic diseases--did Warburg miss inflammation? Nat Immunol, 13 (4): 352-7, 2012.
  • 10. Camell C, Goldberg E, Dixit VD. Regulation of Nlrp3 inflammasome by dietary metabolites. Semin Immunol, 27 (5): 334-42, 2015.
  • 11. Antonelli M, Kushner I. It’s time to redefine inflammation. The FASEB Journal, 31 (5): 1787-91, 2017.
  • 12. Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol Cell, 54 (2): 281-8, 2014.
  • 13. Scott A. What is "inflammation"? Are we ready to move beyond Celsus? British Journal of Sports Medicine, 38 (3): 248-9, 2004.
  • 14. Ahmed A. An overview of inflammation: Mechanism and consequences. 2011.
  • 15. Kumar V. Inflammasomes: Pandora's box for sepsis. J Inflamm Res, 11: 477-502, 2018.
  • 16. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell, 10 (2): 417-26, 2002.
  • 17. Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunol Rev, 243 (1): 136-51, 2011.
  • 18. Palazon-Riquelme P, Lopez-Castejon G. The inflammasomes, immune guardians at defence barriers. Immunology, 155 (3): 320-30, 2018.
  • 19. Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol, 28: 321-42, 2010.
  • 20. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell, 157 (5): 1013-22, 2014.
  • 21. Jin C, Flavell RA. Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol, 30 (5): 628-31, 2010.
  • 22. Groslambert M, Py BF. Spotlight on the NLRP3 inflammasome pathway. J Inflamm Res, 11: 359-74, 2018.
  • 23. Sandall CF, MacDonald JA. Effects of phosphorylation on the NLRP3 inflammasome. Arch Biochem Biophys, 670: 43-57, 2019.
  • 24. de Alba E. Structure, interactions and self-assembly of ASC-dependent inflammasomes. Arch Biochem Biophys, 670: 15-31, 2019.
  • 25. Place DE, Kanneganti TD. Recent advances in inflammasome biology. Curr Opin Immunol, 50: 32-8, 2018.
  • 26. Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet T, et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol, 4: 296-307, 2015.
  • 27. McDonald B, Kubes P. Innate Immune Cell Trafficking and Function During Sterile Inflammation of the Liver. Gastroenterology, 151 (6): 1087-95, 2016.
  • 28. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol, 19 (8): 477-89, 2019.
  • 29. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci, 20 (13): 3328, 2019.
  • 30. Liu Q, Zhang D, Hu D, Zhou X, Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol, 103: 115-24, 2018.
  • 31. Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res, 8: 15-27, 2015.
  • 32. Sharma D, Kanneganti TD. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol, 213 (6): 617-29, 2016.
  • 33. Rubartelli A, Lotze MT, Latz E, Manfredi A. Mechanisms of sterile inflammation. Front Immunol, 4: 398, 2013.
  • 34. Prattichizzo F, De Nigris V, Spiga R, Mancuso E, La Sala L, Antonicelli R, et al. Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Res Rev, 41: 1-17, 2018.
  • 35. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers, 1: 15019, 2015.
  • 36. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med, 21 (7): 677-87, 2015.
  • 37. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nature Reviews Immunology, 11 (2): 98, 2011.
  • 38. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 259 (5091): 87-91, 1993.
  • 39. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science, 271 (5249): 665-8, 1996.
  • 40. Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science, 327 (5963): 296-300, 2010.
  • 41. Coletta DK, Mandarino LJ. Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria. Am J Physiol Endocrinol Metab, 301 (5): E749-55, 2011.
  • 42. Sepehri Z, Kiani Z, Afshari M, Kohan F, Dalvand A, Ghavami S. Inflammasomes and type 2 diabetes: An updated systematic review. Immunol Lett, 192: 97-103, 2017.
  • 43. Rheinheimer J, de Souza BM, Cardoso NS, Bauer AC, Crispim D. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism, 74: 1-9, 2017.
  • 44. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med, 17 (2): 179-88, 2011.
  • 45. Stienstra R, Joosten LA, Koenen T, van Tits B, van Diepen JA, van den Berg SA, et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab, 12 (6): 593-605, 2010.
  • 46. Ahechu P, Zozaya G, Marti P, Hernandez-Lizoain JL, Baixauli J, Unamuno X, et al. NLRP3 Inflammasome: A Possible Link Between Obesity-Associated Low-Grade Chronic Inflammation and Colorectal Cancer Development. Front Immunol, 9: 2918, 2018.
  • 47. Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes, 62 (1): 194-204, 2013.
  • 48. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol, 32 (9): 2045-51, 2012.
  • 49. Bruins MJ, Van Dael P, Eggersdorfer M. The Role of Nutrients in Reducing the Risk for Noncommunicable Diseases during Aging. Nutrients, 11 (1), 2019.
  • 50. Pant S, Deshmukh A, Gurumurthy GS, Pothineni NV, Watts TE, Romeo F, et al. Inflammation and atherosclerosis--revisited. J Cardiovasc Pharmacol Ther, 19 (2): 170-8, 2014.
  • 51. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med, 352 (16): 1685-95, 2005.
  • 52. Kirii H, Niwa T, Yamada Y, Wada H, Saito K, Iwakura Y, et al. Lack of interleukin-1β decreases the severity of atherosclerosis in ApoE-deficient mice. Arteriosclerosis, thrombosis, and vascular biology, 23 (4): 656-60, 2003.
  • 53. Gage J, Hasu M, Thabet M, Whitman SC. Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. Can J Cardiol, 28 (2): 222-9, 2012.
  • 54. Menu P, Pellegrin M, Aubert JF, Bouzourene K, Tardivel A, Mazzolai L, et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis, 2 (3): e137, 2011.
  • 55. Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J Cell Physiol, 233 (3): 2116-32, 2018.
  • 56. Baldrighi M, Mallat Z, Li X. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis, 267: 127-38, 2017.
  • 57. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 464 (7293): 1357-61, 2010.
  • 58. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med, 18 (3): 363-74, 2012.
  • 59. Kirwan AM, Lenighan YM, O'Reilly ME, McGillicuddy FC, Roche HM. Nutritional modulation of metabolic inflammation. Biochem Soc Trans, 45 (4): 979-85, 2017.
  • 60. Roche HM. Dietary modulation of energy homoeostasis and metabolic-inflammation. Proc Nutr Soc: 1-6, 2019.
  • 61. Traba J, Kwarteng-Siaw M, Okoli TC, Li J, Huffstutler RD, Bray A, et al. Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects. J Clin Invest, 125 (12): 4592-600, 2015.
  • 62. Velickovic N, Teofilovic A, Ilic D, Djordjevic A, Vojnovic Milutinovic D, Petrovic S, et al. Modulation of hepatic inflammation and energy-sensing pathways in the rat liver by high-fructose diet and chronic stress. Eur J Nutr, 58 (5): 1829-45, 2019.
  • 63. Milagres T, Garcia-Arroyo FE, Lanaspa MA, Garcia G, Ishimoto T, Andres-Hernando A, et al. Rehydration with fructose worsens dehydration-induced renal damage. BMC Nephrol, 19 (1): 180, 2018.
  • 64. Pavillard LE, Canadas-Lozano D, Alcocer-Gomez E, Marin-Aguilar F, Pereira S, Robertson AAB, et al. NLRP3-inflammasome inhibition prevents high fat and high sugar diets-induced heart damage through autophagy induction. Oncotarget, 8 (59): 99740-56, 2017.
  • 65. Chiazza F, Couturier-Maillard A, Benetti E, Mastrocola R, Nigro D, Cutrin JC, et al. Targeting the NLRP3 Inflammasome to Reduce Diet-Induced Metabolic Abnormalities in Mice. Mol Med, 21 (1): 1025-37, 2016.
  • 66. Mastrocola R, Collino M, Penna C, Nigro D, Chiazza F, Fracasso V, et al. Maladaptive Modulations of NLRP3 Inflammasome and Cardioprotective Pathways Are Involved in Diet-Induced Exacerbation of Myocardial Ischemia/Reperfusion Injury in Mice. Oxid Med Cell Longev, 2016: 3480637, 2016.
  • 67. Nigro D, Menotti F, Cento AS, Serpe L, Chiazza F, Dal Bello F, et al. Chronic administration of saturated fats and fructose differently affect SREBP activity resulting in different modulation of Nrf2 and Nlrp3 inflammasome pathways in mice liver. J Nutr Biochem, 42: 160-71, 2017.
  • 68. Garay-Lugo N, Dominguez-Lopez A, Miliar Garcia A, Aguilar Barrera E, Gomez Lopez M, Gomez Alcala A, et al. n-3 Fatty acids modulate the mRNA expression of the Nlrp3 inflammasome and Mtor in the liver of rats fed with high-fat or high-fat/fructose diets. Immunopharmacol Immunotoxicol, 38 (5): 353-63, 2016.
  • 69. Keshk WA, Ibrahim MA, Shalaby SM, Zalat ZA, Elseady WS. Redox status, inflammation, necroptosis and inflammasome as indispensable contributors to high fat diet (HFD)-induced neurodegeneration; Effect of N-acetylcysteine (NAC). Arch Biochem Biophys, 680: 108227, 2019.
  • 70. Roncero-Ramos I, Rangel-Zuniga OA, Lopez-Moreno J, Alcala-Diaz JF, Perez-Martinez P, Jimenez-Lucena R, et al. Mediterranean Diet, Glucose Homeostasis, and Inflammasome Genetic Variants: The CORDIOPREV Study. Mol Nutr Food Res, 62 (9): e1700960, 2018.
  • 71. Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol, 12 (5): 408-15, 2011.
  • 72. Reynolds CM, McGillicuddy FC, Harford KA, Finucane OM, Mills KH, Roche HM. Dietary saturated fatty acids prime the NLRP3 inflammasome via TLR4 in dendritic cells-implications for diet-induced insulin resistance. Mol Nutr Food Res, 56 (8): 1212-22, 2012.
  • 73. Karasawa T, Kawashima A, Usui-Kawanishi F, Watanabe S, Kimura H, Kamata R, et al. Saturated Fatty Acids Undergo Intracellular Crystallization and Activate the NLRP3 Inflammasome in Macrophages. Arterioscler Thromb Vasc Biol, 38 (4): 744-56, 2018.
  • 74. Christ A, Gunther P, Lauterbach MAR, Duewell P, Biswas D, Pelka K, et al. Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell, 172 (1-2): 162-75 e14, 2018.
  • 75. Finucane OM, Lyons CL, Murphy AM, Reynolds CM, Klinger R, Healy NP, et al. Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1beta secretion and insulin resistance despite obesity. Diabetes, 64 (6): 2116-28, 2015.
  • 76. L'Homme L, Esser N, Riva L, Scheen A, Paquot N, Piette J, et al. Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages. J Lipid Res, 54 (11): 2998-3008, 2013.
  • 77. Schuster S, Johnson CD, Hennebelle M, Holtmann T, Taha AY, Kirpich IA, et al. Oxidized linoleic acid metabolites induce liver mitochondrial dysfunction, apoptosis, and NLRP3 activation in mice. J Lipid Res, 59 (9): 1597-609, 2018.
  • 78. Yuan X, Wang L, Bhat OM, Lohner H, Li PL. Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate. Redox Biol, 16: 21-31, 2018.
  • 79. De Boer AA, Monk JM, Liddle DM, Hutchinson AL, Power KA, Ma DW, et al. Fish-oil-derived n-3 polyunsaturated fatty acids reduce NLRP3 inflammasome activity and obesity-related inflammatory cross-talk between adipocytes and CD11b(+) macrophages. J Nutr Biochem, 34: 61-72, 2016.
  • 80. Sui YH, Luo WJ, Xu QY, Hua J. Dietary saturated fatty acid and polyunsaturated fatty acid oppositely affect hepatic NOD-like receptor protein 3 inflammasome through regulating nuclear factor-kappa B activation. World J Gastroenterol, 22 (8): 2533-44, 2016.
  • 81. Martinez-Micaelo N, Gonzalez-Abuin N, Pinent M, Ardevol A, Blay M. Dietary fatty acid composition is sensed by the NLRP3 inflammasome: omega-3 fatty acid (DHA) prevents NLRP3 activation in human macrophages. Food Funct, 7 (8): 3480-7, 2016.
  • 82. Wood LG, Li Q, Scott HA, Rutting S, Berthon BS, Gibson PG, et al. Saturated fatty acids, obesity, and the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in asthmatic patients. J Allergy Clin Immunol, 143 (1): 305-15, 2019.
  • 83. Lin C, Chao H, Li Z, Xu X, Liu Y, Bao Z, et al. Omega-3 fatty acids regulate NLRP3 inflammasome activation and prevent behavior deficits after traumatic brain injury. Exp Neurol, 290: 115-22, 2017.
  • 84. Shen L, Yang Y, Ou T, Key CC, Tong SH, Sequeira RC, et al. Dietary PUFAs attenuate NLRP3 inflammasome activation via enhancing macrophage autophagy. J Lipid Res, 58 (9): 1808-21, 2017.
  • 85. Darwesh AM, Jamieson KL, Wang C, Samokhvalov V, Seubert JM. Cardioprotective effects of CYP-derived epoxy metabolites of docosahexaenoic acid involve limiting NLRP3 inflammasome activation (1). Can J Physiol Pharmacol, 97 (6): 544-56, 2019.
  • 86. Wen M, Ding L, Zhang L, Zhang T, Teruyoshi Y, Wang Y, et al. Eicosapentaenoic Acid-Enriched Phosphatidylcholine Mitigated Abeta1-42-Induced Neurotoxicity via Autophagy-Inflammasome Pathway. J Agric Food Chem, 67 (49): 13767-74, 2019.
  • 87. Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity, 38 (6): 1154-63, 2013.
  • 88. Progatzky F, Sangha NJ, Yoshida N, McBrien M, Cheung J, Shia A, et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat Commun, 5: 5864, 2014.
  • 89. Du Q, Wang Q, Fan H, Wang J, Liu X, Wang H, et al. Dietary cholesterol promotes AOM-induced colorectal cancer through activating the NLRP3 inflammasome. Biochem Pharmacol, 105: 42-54, 2016.
  • 90. Zhang R, Han S, Zhang Z, Zhang W, Yang J, Wan Z, et al. Cereal Fiber Ameliorates High-Fat/Cholesterol-Diet-Induced Atherosclerosis by Modulating the NLRP3 Inflammasome Pathway in ApoE(-/-) Mice. J Agric Food Chem, 66 (19): 4827-34, 2018.
  • 91. Bitzer ZT, Wopperer AL, Chrisfield BJ, Tao L, Cooper TK, Vanamala J, et al. Soy protein concentrate mitigates markers of colonic inflammation and loss of gut barrier function in vitro and in vivo. J Nutr Biochem, 40: 201-8, 2017.
  • 92. He L, Weber KJ, Schilling JD. Glutamine Modulates Macrophage Lipotoxicity. Nutrients, 8 (4): 215, 2016.
  • 93. Solon-Biet SM, Cogger VC, Pulpitel T, Wahl D, Clark X, Bagley E, et al. Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat Metab, 1 (5): 532-45, 2019.
  • 94. Ge CX, Yu R, Xu MX, Li PQ, Fan CY, Li JM, et al. Betaine prevented fructose-induced NAFLD by regulating LXRalpha/PPARalpha pathway and alleviating ER stress in rats. Eur J Pharmacol, 770: 154-64, 2016.
  • 95. Lyons CL, Roche HM. Nutritional Modulation of AMPK-Impact upon Metabolic-Inflammation. Int J Mol Sci, 19 (10), 2018.
  • 96. Traba J, Sack MN. The role of caloric load and mitochondrial homeostasis in the regulation of the NLRP3 inflammasome. Cell Mol Life Sci, 74 (10): 1777-91, 2017.
  • 97. Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev, 25 (18): 1895-908, 2011.
  • 98. Clayton ZE, Vickers MH, Bernal A, Yap C, Sloboda DM. Early Life Exposure to Fructose Alters Maternal, Fetal and Neonatal Hepatic Gene Expression and Leads to Sex-Dependent Changes in Lipid Metabolism in Rat Offspring. PLoS One, 10 (11): e0141962, 2015.
  • 99. Aragno M, Mastrocola R. Dietary Sugars and Endogenous Formation of Advanced Glycation Endproducts: Emerging Mechanisms of Disease. Nutrients, 9 (4), 2017.
  • 100. Tan Z, Xie N, Cui H, Moellering DR, Abraham E, Thannickal VJ, et al. Pyruvate dehydrogenate kinase 1 participates in macrophage polarization via regulating glucose metabolism. The Journal of immunology: 1402469, 2015.
  • 101. Billingsley HE, Carbone S, Lavie CJ. Dietary Fats and Chronic Noncommunicable Diseases. Nutrients, 10 (10), 2018.
  • 102. Pavillard LE, Marin-Aguilar F, Bullon P, Cordero MD. Cardiovascular diseases, NLRP3 inflammasome, and western dietary patterns. Pharmacol Res, 131: 44-50, 2018.
  • 103. Youm YH, Adijiang A, Vandanmagsar B, Burk D, Ravussin A, Dixit VD. Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage. Endocrinology, 152 (11): 4039-45, 2011.
  • 104. Moon J-S, Nakahira K, Choi AMK. Fatty acid synthesis and NLRP3-inflammasome. Oncotarget, 6 (26): 21765-6, 2015.
  • 105. Schilling JD, Machkovech HM, He L, Diwan A, Schaffer JE. TLR4 activation under lipotoxic conditions leads to synergistic macrophage cell death through a TRIF-dependent pathway. J Immunol, 190 (3): 1285-96, 2013.
  • 106. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid–induced insulin resistance. The Journal of clinical investigation, 116 (11): 3015-25, 2006.
  • 107. Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity, 38 (6): 1154-63, 2013.
  • 108. Podrez EA, Poliakov E, Shen ZZ, Zhang RL, Deng YJ, Sun MJ, et al. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. Journal of Biological Chemistry, 277 (41): 38517-23, 2002.
  • 109. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med, 21 (3): 263-9, 2015.
  • 110. Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr, 48 (5): 430-41, 2008.
  • 111. Song EK, Hyuck Hwa K, Ji Yeon K, Young Im K, Hee Jong W, Hyong Joo L. Anticancer activity of hydrophobic peptides from soy proteins. BioFactors, 12: 151-5, 2000.
  • 112. Newsholme P, Curi R, Pithon Curi TC, Murphy CJ, Garcia C, Pires de Melo M. Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease11This review is written to mark the retirement of Prof. Eric A. Newsholme, University of Oxford, United Kingdom, and to acknowledge his contribution to the field of immune cell metabolism. The Journal of Nutritional Biochemistry, 10 (6): 316-24, 1999.
  • 113. Choe JY, Kim SK. Quercetin and Ascorbic Acid Suppress Fructose-Induced NLRP3 Inflammasome Activation by Blocking Intracellular Shuttling of TXNIP in Human Macrophage Cell Lines. Inflammation, 40 (3): 980-94, 2017.
  • 114. Kim Y, Wang W, Okla M, Kang I, Moreau R, Chung S. Suppression of NLRP3 inflammasome by gamma-tocotrienol ameliorates type 2 diabetes. J Lipid Res, 57 (1): 66-76, 2016.
  • 115. Tapia G, Silva D, Romero N, Pettinelli P, Dossi CG, de Miguel M, et al. Role of dietary alpha- and gamma-tocopherol from Rosa mosqueta oil in the prevention of alterations induced by high-fat diet in a murine model. Nutrition, 53: 1-8, 2018.
  • 116. Ip WK, Medzhitov R. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat Commun, 6: 6931, 2015.
  • 117. Prager P, Hollborn M, Steffen A, Wiedemann P, Kohen L, Bringmann A. P2Y1 Receptor Signaling Contributes to High Salt-Induced Priming of the NLRP3 Inflammasome in Retinal Pigment Epithelial Cells. PLoS One, 11 (10): e0165653, 2016.
  • 118. Wang ML, Kang YM, Li XG, Su Q, Li HB, Liu KL, et al. Central blockade of NLRP3 reduces blood pressure via regulating inflammation microenvironment and neurohormonal excitation in salt-induced prehypertensive rats. J Neuroinflammation, 15 (1): 95, 2018.
  • 119. Wan Z, Wen W, Ren K, Zhou D, Liu J, Wu Y, et al. Involvement of NLRP3 inflammasome in the impacts of sodium and potassium on insulin resistance in normotensive Asians. Br J Nutr, 119 (2): 228-37, 2018.
  • 120. Handa P, Morgan-Stevenson V, Maliken BD, Nelson JE, Washington S, Westerman M, et al. Iron overload results in hepatic oxidative stress, immune cell activation, and hepatocellular ballooning injury, leading to nonalcoholic steatohepatitis in genetically obese mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 310 (2): G117-G27, 2016.
  • 121. Fan Y, Zhang X, Yang L, Wang J, Hu Y, Bian A, et al. Zinc inhibits high glucose-induced NLRP3 inflammasome activation in human peritoneal mesothelial cells. Mol Med Rep, 16 (4): 5195-202, 2017.

Inflammation in diabetes and atherosclerosis: relationship between macro/micronutrients and the NLRP3 inflammasome

Year 2021, Volume: 11 Issue: 2, 336 - 349, 01.08.2021

Abstract

Chronic diseases, such as type II diabetes and cardiovascular diseases, have become an increasingly health problem in society. In recent years, mortality of chronic diseases has also been increased. Type II diabetes and cardiovascular diseases have been caused or resulted from many factors. In generally, inflammation is most common factor that links with these diseases. It is known that inflammation develops chronic diseases, and vice versa. In this case, NOD-like receptor family pyrin domain containing 3 (NLRP3) which is a sensor molecule involved in development of inflammation is thought to be associated with chronic diseases. Infammasomes are induced or suppressed by pathogen-associated or damage-associated molecules such as nutrients. Since type II diabetes and atherosclerosis are associated with inflammation, it is also thought to be related to infammasomes and dietary components. Therefore, nutrition is seen as an important factor that can modulate inflammation through NLRP3. Dietary content, micro and macronutrients affect the formation of inflammation or affect prognosis of the diseases. Dietary factors (hyperglycemia, high levels of fatty acids, cholesterol and ATP), changes in cell signaling, toxins, oxidative stress, endoplasmic reticulum stress, mitochondria and lysosome dysfunction can regulate NLRP3 inflammasome. Multiple studies have been shown that nutrients like fatty acids, cholesterol, fructose, sodium are stimuli in terms of inflammation and disease. This review presents a brief overview of the possible effects of macro and micronutrients on NLRP3 inflammasome and chronic diseases.

References

  • 1. Allen L. Are we facing a noncommunicable disease pandemic? J Epidemiol Glob Health, 7 (1): 5-9, 2017.
  • 2. Stylianou E. Epigenetics of chronic inflammatory diseases. J Inflamm Res, 12: 1-14, 2019.
  • 3. WHO. Noncommunicable diseases. 2019. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases; Accessed: 04.02.2019.
  • 4. Hotamisligil GS. Inflammation and metabolic disorders. Nature, 444 (7121): 860-7, 2006.
  • 5. Schroder K, Tschopp J. The inflammasomes. Cell, 140 (6): 821-32, 2010.
  • 6. Amin J, Boche D, Rakic S. What do we know about the inflammasome in humans? Brain Pathol, 27 (2): 192-204, 2017.
  • 7. Karasawa T, Takahashi M. Saturated fatty acid-crystals activate NLRP3 inflammasome. Aging (Albany NY), 11 (6): 1613-4, 2019.
  • 8. Bullon P, Cano-Garcia FJ, Alcocer-Gomez E, Varela-Lopez A, Roman-Malo L, Ruiz-Salmeron RJ, et al. Could NLRP3-Inflammasome Be a Cardiovascular Risk Biomarker in Acute Myocardial Infarction Patients? Antioxid Redox Signal, 27 (5): 269-75, 2017.
  • 9. Wen H, Ting JP, O'Neill LA. A role for the NLRP3 inflammasome in metabolic diseases--did Warburg miss inflammation? Nat Immunol, 13 (4): 352-7, 2012.
  • 10. Camell C, Goldberg E, Dixit VD. Regulation of Nlrp3 inflammasome by dietary metabolites. Semin Immunol, 27 (5): 334-42, 2015.
  • 11. Antonelli M, Kushner I. It’s time to redefine inflammation. The FASEB Journal, 31 (5): 1787-91, 2017.
  • 12. Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol Cell, 54 (2): 281-8, 2014.
  • 13. Scott A. What is "inflammation"? Are we ready to move beyond Celsus? British Journal of Sports Medicine, 38 (3): 248-9, 2004.
  • 14. Ahmed A. An overview of inflammation: Mechanism and consequences. 2011.
  • 15. Kumar V. Inflammasomes: Pandora's box for sepsis. J Inflamm Res, 11: 477-502, 2018.
  • 16. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell, 10 (2): 417-26, 2002.
  • 17. Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunol Rev, 243 (1): 136-51, 2011.
  • 18. Palazon-Riquelme P, Lopez-Castejon G. The inflammasomes, immune guardians at defence barriers. Immunology, 155 (3): 320-30, 2018.
  • 19. Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol, 28: 321-42, 2010.
  • 20. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell, 157 (5): 1013-22, 2014.
  • 21. Jin C, Flavell RA. Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol, 30 (5): 628-31, 2010.
  • 22. Groslambert M, Py BF. Spotlight on the NLRP3 inflammasome pathway. J Inflamm Res, 11: 359-74, 2018.
  • 23. Sandall CF, MacDonald JA. Effects of phosphorylation on the NLRP3 inflammasome. Arch Biochem Biophys, 670: 43-57, 2019.
  • 24. de Alba E. Structure, interactions and self-assembly of ASC-dependent inflammasomes. Arch Biochem Biophys, 670: 15-31, 2019.
  • 25. Place DE, Kanneganti TD. Recent advances in inflammasome biology. Curr Opin Immunol, 50: 32-8, 2018.
  • 26. Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet T, et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol, 4: 296-307, 2015.
  • 27. McDonald B, Kubes P. Innate Immune Cell Trafficking and Function During Sterile Inflammation of the Liver. Gastroenterology, 151 (6): 1087-95, 2016.
  • 28. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol, 19 (8): 477-89, 2019.
  • 29. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci, 20 (13): 3328, 2019.
  • 30. Liu Q, Zhang D, Hu D, Zhou X, Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol, 103: 115-24, 2018.
  • 31. Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res, 8: 15-27, 2015.
  • 32. Sharma D, Kanneganti TD. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol, 213 (6): 617-29, 2016.
  • 33. Rubartelli A, Lotze MT, Latz E, Manfredi A. Mechanisms of sterile inflammation. Front Immunol, 4: 398, 2013.
  • 34. Prattichizzo F, De Nigris V, Spiga R, Mancuso E, La Sala L, Antonicelli R, et al. Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Res Rev, 41: 1-17, 2018.
  • 35. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers, 1: 15019, 2015.
  • 36. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med, 21 (7): 677-87, 2015.
  • 37. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nature Reviews Immunology, 11 (2): 98, 2011.
  • 38. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 259 (5091): 87-91, 1993.
  • 39. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science, 271 (5249): 665-8, 1996.
  • 40. Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science, 327 (5963): 296-300, 2010.
  • 41. Coletta DK, Mandarino LJ. Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria. Am J Physiol Endocrinol Metab, 301 (5): E749-55, 2011.
  • 42. Sepehri Z, Kiani Z, Afshari M, Kohan F, Dalvand A, Ghavami S. Inflammasomes and type 2 diabetes: An updated systematic review. Immunol Lett, 192: 97-103, 2017.
  • 43. Rheinheimer J, de Souza BM, Cardoso NS, Bauer AC, Crispim D. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism, 74: 1-9, 2017.
  • 44. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med, 17 (2): 179-88, 2011.
  • 45. Stienstra R, Joosten LA, Koenen T, van Tits B, van Diepen JA, van den Berg SA, et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab, 12 (6): 593-605, 2010.
  • 46. Ahechu P, Zozaya G, Marti P, Hernandez-Lizoain JL, Baixauli J, Unamuno X, et al. NLRP3 Inflammasome: A Possible Link Between Obesity-Associated Low-Grade Chronic Inflammation and Colorectal Cancer Development. Front Immunol, 9: 2918, 2018.
  • 47. Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes, 62 (1): 194-204, 2013.
  • 48. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol, 32 (9): 2045-51, 2012.
  • 49. Bruins MJ, Van Dael P, Eggersdorfer M. The Role of Nutrients in Reducing the Risk for Noncommunicable Diseases during Aging. Nutrients, 11 (1), 2019.
  • 50. Pant S, Deshmukh A, Gurumurthy GS, Pothineni NV, Watts TE, Romeo F, et al. Inflammation and atherosclerosis--revisited. J Cardiovasc Pharmacol Ther, 19 (2): 170-8, 2014.
  • 51. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med, 352 (16): 1685-95, 2005.
  • 52. Kirii H, Niwa T, Yamada Y, Wada H, Saito K, Iwakura Y, et al. Lack of interleukin-1β decreases the severity of atherosclerosis in ApoE-deficient mice. Arteriosclerosis, thrombosis, and vascular biology, 23 (4): 656-60, 2003.
  • 53. Gage J, Hasu M, Thabet M, Whitman SC. Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. Can J Cardiol, 28 (2): 222-9, 2012.
  • 54. Menu P, Pellegrin M, Aubert JF, Bouzourene K, Tardivel A, Mazzolai L, et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis, 2 (3): e137, 2011.
  • 55. Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J Cell Physiol, 233 (3): 2116-32, 2018.
  • 56. Baldrighi M, Mallat Z, Li X. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis, 267: 127-38, 2017.
  • 57. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 464 (7293): 1357-61, 2010.
  • 58. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med, 18 (3): 363-74, 2012.
  • 59. Kirwan AM, Lenighan YM, O'Reilly ME, McGillicuddy FC, Roche HM. Nutritional modulation of metabolic inflammation. Biochem Soc Trans, 45 (4): 979-85, 2017.
  • 60. Roche HM. Dietary modulation of energy homoeostasis and metabolic-inflammation. Proc Nutr Soc: 1-6, 2019.
  • 61. Traba J, Kwarteng-Siaw M, Okoli TC, Li J, Huffstutler RD, Bray A, et al. Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects. J Clin Invest, 125 (12): 4592-600, 2015.
  • 62. Velickovic N, Teofilovic A, Ilic D, Djordjevic A, Vojnovic Milutinovic D, Petrovic S, et al. Modulation of hepatic inflammation and energy-sensing pathways in the rat liver by high-fructose diet and chronic stress. Eur J Nutr, 58 (5): 1829-45, 2019.
  • 63. Milagres T, Garcia-Arroyo FE, Lanaspa MA, Garcia G, Ishimoto T, Andres-Hernando A, et al. Rehydration with fructose worsens dehydration-induced renal damage. BMC Nephrol, 19 (1): 180, 2018.
  • 64. Pavillard LE, Canadas-Lozano D, Alcocer-Gomez E, Marin-Aguilar F, Pereira S, Robertson AAB, et al. NLRP3-inflammasome inhibition prevents high fat and high sugar diets-induced heart damage through autophagy induction. Oncotarget, 8 (59): 99740-56, 2017.
  • 65. Chiazza F, Couturier-Maillard A, Benetti E, Mastrocola R, Nigro D, Cutrin JC, et al. Targeting the NLRP3 Inflammasome to Reduce Diet-Induced Metabolic Abnormalities in Mice. Mol Med, 21 (1): 1025-37, 2016.
  • 66. Mastrocola R, Collino M, Penna C, Nigro D, Chiazza F, Fracasso V, et al. Maladaptive Modulations of NLRP3 Inflammasome and Cardioprotective Pathways Are Involved in Diet-Induced Exacerbation of Myocardial Ischemia/Reperfusion Injury in Mice. Oxid Med Cell Longev, 2016: 3480637, 2016.
  • 67. Nigro D, Menotti F, Cento AS, Serpe L, Chiazza F, Dal Bello F, et al. Chronic administration of saturated fats and fructose differently affect SREBP activity resulting in different modulation of Nrf2 and Nlrp3 inflammasome pathways in mice liver. J Nutr Biochem, 42: 160-71, 2017.
  • 68. Garay-Lugo N, Dominguez-Lopez A, Miliar Garcia A, Aguilar Barrera E, Gomez Lopez M, Gomez Alcala A, et al. n-3 Fatty acids modulate the mRNA expression of the Nlrp3 inflammasome and Mtor in the liver of rats fed with high-fat or high-fat/fructose diets. Immunopharmacol Immunotoxicol, 38 (5): 353-63, 2016.
  • 69. Keshk WA, Ibrahim MA, Shalaby SM, Zalat ZA, Elseady WS. Redox status, inflammation, necroptosis and inflammasome as indispensable contributors to high fat diet (HFD)-induced neurodegeneration; Effect of N-acetylcysteine (NAC). Arch Biochem Biophys, 680: 108227, 2019.
  • 70. Roncero-Ramos I, Rangel-Zuniga OA, Lopez-Moreno J, Alcala-Diaz JF, Perez-Martinez P, Jimenez-Lucena R, et al. Mediterranean Diet, Glucose Homeostasis, and Inflammasome Genetic Variants: The CORDIOPREV Study. Mol Nutr Food Res, 62 (9): e1700960, 2018.
  • 71. Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol, 12 (5): 408-15, 2011.
  • 72. Reynolds CM, McGillicuddy FC, Harford KA, Finucane OM, Mills KH, Roche HM. Dietary saturated fatty acids prime the NLRP3 inflammasome via TLR4 in dendritic cells-implications for diet-induced insulin resistance. Mol Nutr Food Res, 56 (8): 1212-22, 2012.
  • 73. Karasawa T, Kawashima A, Usui-Kawanishi F, Watanabe S, Kimura H, Kamata R, et al. Saturated Fatty Acids Undergo Intracellular Crystallization and Activate the NLRP3 Inflammasome in Macrophages. Arterioscler Thromb Vasc Biol, 38 (4): 744-56, 2018.
  • 74. Christ A, Gunther P, Lauterbach MAR, Duewell P, Biswas D, Pelka K, et al. Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell, 172 (1-2): 162-75 e14, 2018.
  • 75. Finucane OM, Lyons CL, Murphy AM, Reynolds CM, Klinger R, Healy NP, et al. Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1beta secretion and insulin resistance despite obesity. Diabetes, 64 (6): 2116-28, 2015.
  • 76. L'Homme L, Esser N, Riva L, Scheen A, Paquot N, Piette J, et al. Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages. J Lipid Res, 54 (11): 2998-3008, 2013.
  • 77. Schuster S, Johnson CD, Hennebelle M, Holtmann T, Taha AY, Kirpich IA, et al. Oxidized linoleic acid metabolites induce liver mitochondrial dysfunction, apoptosis, and NLRP3 activation in mice. J Lipid Res, 59 (9): 1597-609, 2018.
  • 78. Yuan X, Wang L, Bhat OM, Lohner H, Li PL. Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate. Redox Biol, 16: 21-31, 2018.
  • 79. De Boer AA, Monk JM, Liddle DM, Hutchinson AL, Power KA, Ma DW, et al. Fish-oil-derived n-3 polyunsaturated fatty acids reduce NLRP3 inflammasome activity and obesity-related inflammatory cross-talk between adipocytes and CD11b(+) macrophages. J Nutr Biochem, 34: 61-72, 2016.
  • 80. Sui YH, Luo WJ, Xu QY, Hua J. Dietary saturated fatty acid and polyunsaturated fatty acid oppositely affect hepatic NOD-like receptor protein 3 inflammasome through regulating nuclear factor-kappa B activation. World J Gastroenterol, 22 (8): 2533-44, 2016.
  • 81. Martinez-Micaelo N, Gonzalez-Abuin N, Pinent M, Ardevol A, Blay M. Dietary fatty acid composition is sensed by the NLRP3 inflammasome: omega-3 fatty acid (DHA) prevents NLRP3 activation in human macrophages. Food Funct, 7 (8): 3480-7, 2016.
  • 82. Wood LG, Li Q, Scott HA, Rutting S, Berthon BS, Gibson PG, et al. Saturated fatty acids, obesity, and the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in asthmatic patients. J Allergy Clin Immunol, 143 (1): 305-15, 2019.
  • 83. Lin C, Chao H, Li Z, Xu X, Liu Y, Bao Z, et al. Omega-3 fatty acids regulate NLRP3 inflammasome activation and prevent behavior deficits after traumatic brain injury. Exp Neurol, 290: 115-22, 2017.
  • 84. Shen L, Yang Y, Ou T, Key CC, Tong SH, Sequeira RC, et al. Dietary PUFAs attenuate NLRP3 inflammasome activation via enhancing macrophage autophagy. J Lipid Res, 58 (9): 1808-21, 2017.
  • 85. Darwesh AM, Jamieson KL, Wang C, Samokhvalov V, Seubert JM. Cardioprotective effects of CYP-derived epoxy metabolites of docosahexaenoic acid involve limiting NLRP3 inflammasome activation (1). Can J Physiol Pharmacol, 97 (6): 544-56, 2019.
  • 86. Wen M, Ding L, Zhang L, Zhang T, Teruyoshi Y, Wang Y, et al. Eicosapentaenoic Acid-Enriched Phosphatidylcholine Mitigated Abeta1-42-Induced Neurotoxicity via Autophagy-Inflammasome Pathway. J Agric Food Chem, 67 (49): 13767-74, 2019.
  • 87. Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity, 38 (6): 1154-63, 2013.
  • 88. Progatzky F, Sangha NJ, Yoshida N, McBrien M, Cheung J, Shia A, et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat Commun, 5: 5864, 2014.
  • 89. Du Q, Wang Q, Fan H, Wang J, Liu X, Wang H, et al. Dietary cholesterol promotes AOM-induced colorectal cancer through activating the NLRP3 inflammasome. Biochem Pharmacol, 105: 42-54, 2016.
  • 90. Zhang R, Han S, Zhang Z, Zhang W, Yang J, Wan Z, et al. Cereal Fiber Ameliorates High-Fat/Cholesterol-Diet-Induced Atherosclerosis by Modulating the NLRP3 Inflammasome Pathway in ApoE(-/-) Mice. J Agric Food Chem, 66 (19): 4827-34, 2018.
  • 91. Bitzer ZT, Wopperer AL, Chrisfield BJ, Tao L, Cooper TK, Vanamala J, et al. Soy protein concentrate mitigates markers of colonic inflammation and loss of gut barrier function in vitro and in vivo. J Nutr Biochem, 40: 201-8, 2017.
  • 92. He L, Weber KJ, Schilling JD. Glutamine Modulates Macrophage Lipotoxicity. Nutrients, 8 (4): 215, 2016.
  • 93. Solon-Biet SM, Cogger VC, Pulpitel T, Wahl D, Clark X, Bagley E, et al. Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat Metab, 1 (5): 532-45, 2019.
  • 94. Ge CX, Yu R, Xu MX, Li PQ, Fan CY, Li JM, et al. Betaine prevented fructose-induced NAFLD by regulating LXRalpha/PPARalpha pathway and alleviating ER stress in rats. Eur J Pharmacol, 770: 154-64, 2016.
  • 95. Lyons CL, Roche HM. Nutritional Modulation of AMPK-Impact upon Metabolic-Inflammation. Int J Mol Sci, 19 (10), 2018.
  • 96. Traba J, Sack MN. The role of caloric load and mitochondrial homeostasis in the regulation of the NLRP3 inflammasome. Cell Mol Life Sci, 74 (10): 1777-91, 2017.
  • 97. Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev, 25 (18): 1895-908, 2011.
  • 98. Clayton ZE, Vickers MH, Bernal A, Yap C, Sloboda DM. Early Life Exposure to Fructose Alters Maternal, Fetal and Neonatal Hepatic Gene Expression and Leads to Sex-Dependent Changes in Lipid Metabolism in Rat Offspring. PLoS One, 10 (11): e0141962, 2015.
  • 99. Aragno M, Mastrocola R. Dietary Sugars and Endogenous Formation of Advanced Glycation Endproducts: Emerging Mechanisms of Disease. Nutrients, 9 (4), 2017.
  • 100. Tan Z, Xie N, Cui H, Moellering DR, Abraham E, Thannickal VJ, et al. Pyruvate dehydrogenate kinase 1 participates in macrophage polarization via regulating glucose metabolism. The Journal of immunology: 1402469, 2015.
  • 101. Billingsley HE, Carbone S, Lavie CJ. Dietary Fats and Chronic Noncommunicable Diseases. Nutrients, 10 (10), 2018.
  • 102. Pavillard LE, Marin-Aguilar F, Bullon P, Cordero MD. Cardiovascular diseases, NLRP3 inflammasome, and western dietary patterns. Pharmacol Res, 131: 44-50, 2018.
  • 103. Youm YH, Adijiang A, Vandanmagsar B, Burk D, Ravussin A, Dixit VD. Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage. Endocrinology, 152 (11): 4039-45, 2011.
  • 104. Moon J-S, Nakahira K, Choi AMK. Fatty acid synthesis and NLRP3-inflammasome. Oncotarget, 6 (26): 21765-6, 2015.
  • 105. Schilling JD, Machkovech HM, He L, Diwan A, Schaffer JE. TLR4 activation under lipotoxic conditions leads to synergistic macrophage cell death through a TRIF-dependent pathway. J Immunol, 190 (3): 1285-96, 2013.
  • 106. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid–induced insulin resistance. The Journal of clinical investigation, 116 (11): 3015-25, 2006.
  • 107. Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity, 38 (6): 1154-63, 2013.
  • 108. Podrez EA, Poliakov E, Shen ZZ, Zhang RL, Deng YJ, Sun MJ, et al. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. Journal of Biological Chemistry, 277 (41): 38517-23, 2002.
  • 109. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med, 21 (3): 263-9, 2015.
  • 110. Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr, 48 (5): 430-41, 2008.
  • 111. Song EK, Hyuck Hwa K, Ji Yeon K, Young Im K, Hee Jong W, Hyong Joo L. Anticancer activity of hydrophobic peptides from soy proteins. BioFactors, 12: 151-5, 2000.
  • 112. Newsholme P, Curi R, Pithon Curi TC, Murphy CJ, Garcia C, Pires de Melo M. Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease11This review is written to mark the retirement of Prof. Eric A. Newsholme, University of Oxford, United Kingdom, and to acknowledge his contribution to the field of immune cell metabolism. The Journal of Nutritional Biochemistry, 10 (6): 316-24, 1999.
  • 113. Choe JY, Kim SK. Quercetin and Ascorbic Acid Suppress Fructose-Induced NLRP3 Inflammasome Activation by Blocking Intracellular Shuttling of TXNIP in Human Macrophage Cell Lines. Inflammation, 40 (3): 980-94, 2017.
  • 114. Kim Y, Wang W, Okla M, Kang I, Moreau R, Chung S. Suppression of NLRP3 inflammasome by gamma-tocotrienol ameliorates type 2 diabetes. J Lipid Res, 57 (1): 66-76, 2016.
  • 115. Tapia G, Silva D, Romero N, Pettinelli P, Dossi CG, de Miguel M, et al. Role of dietary alpha- and gamma-tocopherol from Rosa mosqueta oil in the prevention of alterations induced by high-fat diet in a murine model. Nutrition, 53: 1-8, 2018.
  • 116. Ip WK, Medzhitov R. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat Commun, 6: 6931, 2015.
  • 117. Prager P, Hollborn M, Steffen A, Wiedemann P, Kohen L, Bringmann A. P2Y1 Receptor Signaling Contributes to High Salt-Induced Priming of the NLRP3 Inflammasome in Retinal Pigment Epithelial Cells. PLoS One, 11 (10): e0165653, 2016.
  • 118. Wang ML, Kang YM, Li XG, Su Q, Li HB, Liu KL, et al. Central blockade of NLRP3 reduces blood pressure via regulating inflammation microenvironment and neurohormonal excitation in salt-induced prehypertensive rats. J Neuroinflammation, 15 (1): 95, 2018.
  • 119. Wan Z, Wen W, Ren K, Zhou D, Liu J, Wu Y, et al. Involvement of NLRP3 inflammasome in the impacts of sodium and potassium on insulin resistance in normotensive Asians. Br J Nutr, 119 (2): 228-37, 2018.
  • 120. Handa P, Morgan-Stevenson V, Maliken BD, Nelson JE, Washington S, Westerman M, et al. Iron overload results in hepatic oxidative stress, immune cell activation, and hepatocellular ballooning injury, leading to nonalcoholic steatohepatitis in genetically obese mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 310 (2): G117-G27, 2016.
  • 121. Fan Y, Zhang X, Yang L, Wang J, Hu Y, Bian A, et al. Zinc inhibits high glucose-induced NLRP3 inflammasome activation in human peritoneal mesothelial cells. Mol Med Rep, 16 (4): 5195-202, 2017.
There are 121 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Collection
Authors

Gülden Arman This is me

Reyhan Nergiz Ünal This is me

Publication Date August 1, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Arman, G., & Ünal, R. N. (2021). Diyabet ve Aterosklerozda İnflamasyon: Makro ve Mikro Besin Ögeleri ile NLRP3 İnflamazomu İlişkisi. Kafkas Journal of Medical Sciences, 11(2), 336-349.
AMA Arman G, Ünal RN. Diyabet ve Aterosklerozda İnflamasyon: Makro ve Mikro Besin Ögeleri ile NLRP3 İnflamazomu İlişkisi. KAFKAS TIP BİL DERG. August 2021;11(2):336-349.
Chicago Arman, Gülden, and Reyhan Nergiz Ünal. “Diyabet Ve Aterosklerozda İnflamasyon: Makro Ve Mikro Besin Ögeleri Ile NLRP3 İnflamazomu İlişkisi”. Kafkas Journal of Medical Sciences 11, no. 2 (August 2021): 336-49.
EndNote Arman G, Ünal RN (August 1, 2021) Diyabet ve Aterosklerozda İnflamasyon: Makro ve Mikro Besin Ögeleri ile NLRP3 İnflamazomu İlişkisi. Kafkas Journal of Medical Sciences 11 2 336–349.
IEEE G. Arman and R. N. Ünal, “Diyabet ve Aterosklerozda İnflamasyon: Makro ve Mikro Besin Ögeleri ile NLRP3 İnflamazomu İlişkisi”, KAFKAS TIP BİL DERG, vol. 11, no. 2, pp. 336–349, 2021.
ISNAD Arman, Gülden - Ünal, Reyhan Nergiz. “Diyabet Ve Aterosklerozda İnflamasyon: Makro Ve Mikro Besin Ögeleri Ile NLRP3 İnflamazomu İlişkisi”. Kafkas Journal of Medical Sciences 11/2 (August 2021), 336-349.
JAMA Arman G, Ünal RN. Diyabet ve Aterosklerozda İnflamasyon: Makro ve Mikro Besin Ögeleri ile NLRP3 İnflamazomu İlişkisi. KAFKAS TIP BİL DERG. 2021;11:336–349.
MLA Arman, Gülden and Reyhan Nergiz Ünal. “Diyabet Ve Aterosklerozda İnflamasyon: Makro Ve Mikro Besin Ögeleri Ile NLRP3 İnflamazomu İlişkisi”. Kafkas Journal of Medical Sciences, vol. 11, no. 2, 2021, pp. 336-49.
Vancouver Arman G, Ünal RN. Diyabet ve Aterosklerozda İnflamasyon: Makro ve Mikro Besin Ögeleri ile NLRP3 İnflamazomu İlişkisi. KAFKAS TIP BİL DERG. 2021;11(2):336-49.