Research Article
BibTex RIS Cite

Malatiyon Verilen Farelerde Oksidasyon Parametreleri Üzerine Allium Czelghauricum (Liliaceae), Lathyrus Karsianus (Fabaceae) ve Onosma Nigricaule (Boraginaceae)’den Elde Edilen Ekstraktların Etkileri

Year 2022, Volume: 12 Issue: 1, 6 - 16, 01.04.2022

Abstract

Amaç: Allium czelghauricum, Lathyrus karsianus ve Onosma nigricaule türlerinden elde edilen ekstraktların antioksidan özellikleri ile farelerde malatiyon kaynaklı oksidan parametreler üzerine bitki ekstraktlarının antioksidan etkilerinin belirlenmesi amaçlanmıştır.
Materyal ve Metot: Deney hayvanları her grupta 10 adet fare olmak üzere toplam 10 gruba ayrıldı. Birinci grup kontrol grubu olarak tasarlandı. İkinci gruba 0,2 mL/kg dozda serum fizyolojik, üçüncü gruba ise yine aynı dozda mısır yağı verildi. Dördüncü (100 mg/kg malatiyon), beşinci (100 mg/kg Allium czelghauricum), altıncı (100 mg/kg Lathyrus karsianus), yedinci (100 mg/kg Onosma nigricaule), sekizinci (100 mg/kg malatiyon+100 mg/kg Allium czelghauricum), dokuzuncu (100 mg/kg malatiyon+100 mg/kg Lathyrus karsianus) ve onuncu gruptakilere (100 mg/kg malatiyon+100 mg/kg Onosma nigricaule) belirlenen miktarlardaki maddeler günlük olarak intraperitonal yolla verildi. Uygulamalar 21 gün süreyle yapıldı. Uygulamadan sonra farelerin serum ve karaciğerinde total oksidan (TOK) ve total antioksidan kapasite (TAK)’leri, vücut ve karaciğer ağırlıkları ile karaciğerde histopatolojik değişiklikler araştırıldı.
Bulgular: Bitki ekstraktlarının nitrik oksit radikalini doza bağlı olarak çalışılan konsantrasyonlarda istatistiksel yönden anlamlı şekilde inhibe ettiği görüldü. Bitki ekstraktlarının önemli miktarda polifenolik bileşikleri içerdiği tespit edildi. Malatiyon verilen farelerin vücut ağırlıklarında azalma meydana gelirken, karaciğer ağırlıklarında artış gözlendi. Histopalojik incelemelerde malatiyon verilen farelerin karaciğerinde patolojik değişimlere rastlandı. Malatiyon uygulanan farelerin serum ve karaciğerinde TOK düzeyi kontrol grubuna göre istatistiksel olarak önemli ölçüde artış gösterirken, TAK düzeyinde ise düşüş gözlenmiştir. Malatiyon ile birlikte bitki ekstraktı verilen farelerin serum ve karaciğerinde TOK düzeyi malatiyon grubuna göre düşüş gösterirken, TAK düzeyinin ise arttığı tespit edilmiştir.
Sonuç: İn vitro çalışmada bitkilerin metanol ekstraktlarının antioksidan özelliklerinin olduğu ortaya kondu. Ayrıca, malatiyonun neden olduğu oksidan etkiye karşı bitki ekstraktlarının antioksidan etki gösterdiği belirlendi.

References

  • 1. Tchounwou PB, Patlolla AK, Yedjou CG, Moore PD. Environmental exposure and health effects associated with malathion toxicity. In: Larramendy ML, Soloneski S, editors. Toxicity and hazard of agrochemicals. Croatia: IntechOpen; 2015:71–91.
  • 2. Kaya S, Pirinçci İ, Bilgili A. Veteriner hekimliğinde toksikoloji. Ankara: MedisanYayınevi; 2002.
  • 3. Tchounwou PB, Patlolla AK, Yedjou CG, Moore PD. Environmental exposure and health effects associated with malathion toxicity. Tox Haz Agro chem. 2015;51:2145–2149.
  • 4. Lobo V, Phatak A, Chandra N. Free radicals and functional foods: impact on human health. Pharmacogn Rev. 2010;4:118–126.
  • 5. He F, Zuo L. Redox roles of reactive oxygen species in cardiovascular diseases. Int J Mol Sci. 2015;16:27770–27780.
  • 6. Block G, Patterson B, Subar A. Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence. Nutr Cancer. 1992;18:1–29.
  • 7. Dresler S, Szymczak G, Wójcik M. Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. Pharm Biol. 2017;55(1):691–695.
  • 8. Türkmen Z. Doğu karadeniz bölgesi Onosma (Boraginaceae) taksonlarının morfolojik ve palinolojik yönden incelenmesi. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı. Doktora Tezi. Trabzon; 2006.
  • 9. Davis PH. Flora of Turkey and the East Aegean Islands. Edinburgh: Edinburgh University Press; 1978:6.
  • 10. Yıldırımlı Ş. The chorology of the Turkish species of Boraginaceae family. Ot Sist Bot Dergisi. 2000;7(1):257–272.
  • 11. Olcay B, Tuncay HO. About the presence of Pulmonaria Angustifolia L. (Boraginaceae) in Turkey. J Pharm Istanbul Univ. 2020;50(3):300–304.
  • 12. Sarikurkcu C, Kirkan B, Ozer MS, Ceylan O, Atilgan N, Cengiz M, Tepe B. Chemical characterization and biological activity of Onosma gigantea extracts. Ind Crop Prod. 2018;115:323–329.
  • 13. Maskovic PZ, Diamanto LD, Vujic JM, Cvetanovic AD, Radojkovic MM, Gadiuric SB, Zengin G. Onosma aucheriana: a source of biologically active molecules for novel food ingredients and pharmaceuticals. J Funct Foods. 2015;19:479–486.
  • 14. Chew YL, Chan EWL, Tan PL, Lim YY, Stanislas J, Goh JK. Assessment of phytochemical content, polyphenolic composition, antioxidant and antibacterial activities of Leguminosae medicinal plants in Peninsular Malaysia. BMC Complement Altern Med. 2011;11(1):1–10.
  • 15. Lamblin F, Travella S, Kuo YH, Van Montagu M, Heijde M. Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food?. Planta. 2019;1–18.
  • 16. Heydari H, Iscan GS, Eryilmaz M, Acikara OB, Sarialtin SY, Tekin M, Coban T. Antimicrobial and anti-Inflammatory activity of some Lathyrus L. (Fabaceae) species growing in Turkey. Turk J Pharm Sci. 2019;16:240–245.
  • 17. Ceylan R, Zengin G, Guler GO, Aktumsek A. Bioactive constituents of Lathyrus czeczottianus and ethyl acetate and water extracts and their biological activities: An endemic plant to Turkey. S Afr J Bot 2020:000:1–6.
  • 18. Pastor-Cavada E, Juan R, Pastor JE, Alaiz M, Vioque J. Antioxidant activity of seed polyphenols in fifteen wild Lathyrus species from South Spain. LWT - Food Sci Technol. 2009;42(3):705–709.
  • 19. Güneş F, Meriç C. Morphological, anatomical and karyological investigations of¸ the Turkish endemic species Lathyrus woronowii Bornm. (Fabaceae). Acta Botanica Croatica. 2017;76:132–137.
  • 20. Putnik P, Gabric D, Roohinejad S, Barba FJ, Granato D, Mallikarjunan K, Lorenzo JM, Kovacevic DB. An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem. 2019;276:680–691.
  • 21. El-Saber Batiha G, Magdy Beshbishy A, G. Wasef L, Elewa YHA, A. AlSagan A, Abd El-Hack ME, et al. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020b; 12:872.
  • 22. Doğan A, Atalay E, Doğan ANC, Aksu Kılıçle P, Mutlu N. İlaç ve zehir laboratuvar uygulama kitabı. In: Doğan A, editor. Ankara: Akademisyen Kitabevi; 2019:189–234.
  • 23. Slinkard K, Singleton VL. Total phenol analyses: automation and comparison with manual methods. Am J Enol Vitic1977;28(1):49–55.
  • 24. Badami S, Gupta MK, Suresh B. Antioxidant activity of the ethanolic extract of Strigaorobanchioides. J Ethnopharmacol. 2003;85(2–3):227–230.
  • 25. Kumar RS, Sivakumar T, Sunderam RS, Gupta M, Mazumdar UK, Gomathi P, et al. Antioxidant and antimicrobial activities of Bauhinia racemosa L. Stem bark. Braz J Med Biol Res. 2005;38:1015–1024.
  • 26. Gren LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JK, Tannenbaum SR. Analysis of nitrate, nitrite and 15N nitrate in biological fluids. Anal Biochem. 1982;126(1):131–138.
  • 27. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37(4):277–285.
  • 28. Luna LG. Manual of histologic staining methods of the armed forces institute of pathology. London: Mc Graw-Hill Book Comp; 1968.
  • 29. De Hertogh, AA, Karl Z. “Allium ornamental species” CRC Handbook of flowering. CRC Press; 2019:22–33.
  • 30. Sobolewska D, Michalska K, Podolak I, Grabowska K. Steroidal saponins from the genus Allium. Phytochemistry Reviews. 2016;15(1):1–35.
  • 31. Tepe B, Sokmen M, Akpulat HA, Sokmen A. In vitro antioxidant activities of the methanol extracts of five Allium species from Turkey. Food Chem. 2005;92(1):89–92.
  • 32. Ahmed R, Seth V, Pasha ST, Banerjee BD. Influence of dietary ginger (Zingiber officinale Rosc) on oxidative stress induced by malathion in rats. Food Chem Toxicol. 2000;38(5):443–450.
  • 33. Kafkas E., Bozdoğan A, Burgut A, Türemiş N, Kargı SP, Cabaroğlu T. Bazı üzümsü meyvelerde toplam fenol ve antosiyanin içerikleri. II. Ulusal Üzümsü Meyveler Sempozyumu. Konya:2006.
  • 34. Ahmad F, Anwar F, Hira S. Review on medicinal importance of Fabaceae family. Pharmacology online. 2016;3:151–157.
  • 35. Arabi Z, Sardari S. An investigation into the antifungal property of Fabaceae using bioinformatics tools. Avicenna J Med Biotechnol. 2010;2(2):93.
  • 36. Chanda S, Dudhatra S, Kaneria M. Antioxidative and antibacterial effects of seeds and fruit rind of nutraceutical plants belonging to the Fabaceae family. Food Funct. 2010;1(3):308-315.
  • 37. Alp H, Aytekin İ, Atakişi O, Öğün M. Ratlarda akut malathion toksisitesinin neden olduğu oksidatif stres üzerine kafeik asit fenil ester ve elajik asit’in etkileri. Ata Üniv Vet Bil Derg. 2011;6(2):117–24.
  • 38. Cadirci E, Suleyman H, Aksoy H, Halici Z, Ozgen U, Koc A et al. Effects of Onosma armeniacum root extract on ethanolinduced oxidative stress in stomach tissue of rats. Chem Biol Interact. 2007;170(1):40–48.
  • 39. Tosun A, Akkol EK, Bahadır O, Yeşilada E. Evaluation of anti-inflammatory and antinociceptive activities of some Onosma L. species growing in Turkey. J Ethnopharmacol. 2008;120(3):378–381.
  • 40. Singh D, Roy BK. Evaluation of malathion-induced cytogenetical effects and oxidative stress in plants using Allium test. Acta Physiol Plant. 2017;39(4):92.
  • 41. Selmi S, Rtibi K, Grami D, Sebai H, Marzouki L. Malathion, an organophosphate insecticide, provokes metabolic, histopathologic, and molecular disorders in liver and kidney in prepubertal male mice. Toxicol Rep. 2018;5:189–195.
  • 42. Shieh P, Jan CR, Liang WZ. The protective effects of the antioxidant N-acetylcysteine (NAC) against oxidative stress-associated apoptosis evoked by the organophosphorus insecticide malathion in normal human astrocytes. Toxicol. 2019;417:1–14.
  • 43. Omran OM, Omer OH. The effects of alpha-lipoic acid on the breast of female albino rats exposed to malathion: Histopathological and immunohistochemical study. Pathol Res Pract. 2015;211(6):462–469.
  • 44. Flehi-Slim I, Chargui I, Boughattas S, El Mabrouk A, Belaid-Nouira Y, Neffati F, Cheikh HB. Malathioninduced hepatotoxicity in male Wistar rats: biochemical and histopathological studies. Environ Sci Pollut Res. 2015;22(22):17828–17838.
  • 45. Ullah S, Li Z, Hasan Z, Khan SU, Fahad S. Malathion-induced oxidative stress leads to histopathological and biochemical toxicity in the liver of rohu (Labeorohita, Hamilton) at acute concentration. Ecotoxicol Environ Saf. 2018;161:270–280.
  • 46. Kalender S, Uzun FG, Durak D, Demir F, Kalender Y. Malathion-induced hepatotoxicity in rats: The effects of vitamins C and E. Food Chem Toxicol. 2010;48(2):633–638

The Effects of Allium Czelghauricum (Liliaceae), Lathyrus Karsianus (Fabaceae) and Onosma Nigricaule (Boraginaceae) Extracts on Oxidation Parameters in Malathion Treated Mice

Year 2022, Volume: 12 Issue: 1, 6 - 16, 01.04.2022

Abstract

Aim: It was aimed to determine antioxidant properties of extracts obtained from Allium czelghauricum, Lathyrus karsianus and Onosma nigricaule species and antioxidant effects of plant extracts on malathion-induced oxidant parameters in mice.
Material and Method: Expermental animals were seperated into ten groups, each consisting of ten mice. First group was designed as a control group. Second group received 0.2 mL/kg of saline, and third group received the same dose of corn oil. Fourth (100 mg/kg malathion), fifth (100 mg/kg Allium czelghauricum), sixth (100 mg/kg Lathyrus karsianus), seventh (100 mg/kg Onosma nigricaule), eighth (100 mg/kg malathion+100 mg/kg Allium czelghauricum), ninth (100 mg/kg malathion+100 mg/kg Lathyrus karsianus) and the tenth group (100 mg/kg malathion+100 mg/kg Onosma nigricaule) were given daily intraperitoneally in the determined amounts. Applications were made for 21 days. After administration, total oxidant and total antioxidant capacities, body and liver weights, and histopathological changes in the liver were investigated in the serum and liver of mice.
Results: It is observed that plant extracts significantly inhibit the dose dependent concentrations of nitric oxide radical. A high amount of polyphenolic compounds were detected in plant extracts. While applied malathion mice weighed lighter, an increase in their liver was observed. Pathological changes were found in the liver of mice given malathion in histopalogical examinations. Total oxidant capacity (TOC) of serum and liver was significantly higher compared with control group; however, a decrease was observed in total antioxidant capacity (TAC). While the TOC in the serum and liver of mice given malathion and plant extract decreased compared to the malathion group, it was found that there was an increase in TAC.
Conclusion: In vitro study, it was revealed that methanol extracts of plants have antioxidant effects. In addition, it was determined that plant extracts exhibited antioxidant effects against the oxidant effect caused by malathion.

References

  • 1. Tchounwou PB, Patlolla AK, Yedjou CG, Moore PD. Environmental exposure and health effects associated with malathion toxicity. In: Larramendy ML, Soloneski S, editors. Toxicity and hazard of agrochemicals. Croatia: IntechOpen; 2015:71–91.
  • 2. Kaya S, Pirinçci İ, Bilgili A. Veteriner hekimliğinde toksikoloji. Ankara: MedisanYayınevi; 2002.
  • 3. Tchounwou PB, Patlolla AK, Yedjou CG, Moore PD. Environmental exposure and health effects associated with malathion toxicity. Tox Haz Agro chem. 2015;51:2145–2149.
  • 4. Lobo V, Phatak A, Chandra N. Free radicals and functional foods: impact on human health. Pharmacogn Rev. 2010;4:118–126.
  • 5. He F, Zuo L. Redox roles of reactive oxygen species in cardiovascular diseases. Int J Mol Sci. 2015;16:27770–27780.
  • 6. Block G, Patterson B, Subar A. Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence. Nutr Cancer. 1992;18:1–29.
  • 7. Dresler S, Szymczak G, Wójcik M. Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. Pharm Biol. 2017;55(1):691–695.
  • 8. Türkmen Z. Doğu karadeniz bölgesi Onosma (Boraginaceae) taksonlarının morfolojik ve palinolojik yönden incelenmesi. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı. Doktora Tezi. Trabzon; 2006.
  • 9. Davis PH. Flora of Turkey and the East Aegean Islands. Edinburgh: Edinburgh University Press; 1978:6.
  • 10. Yıldırımlı Ş. The chorology of the Turkish species of Boraginaceae family. Ot Sist Bot Dergisi. 2000;7(1):257–272.
  • 11. Olcay B, Tuncay HO. About the presence of Pulmonaria Angustifolia L. (Boraginaceae) in Turkey. J Pharm Istanbul Univ. 2020;50(3):300–304.
  • 12. Sarikurkcu C, Kirkan B, Ozer MS, Ceylan O, Atilgan N, Cengiz M, Tepe B. Chemical characterization and biological activity of Onosma gigantea extracts. Ind Crop Prod. 2018;115:323–329.
  • 13. Maskovic PZ, Diamanto LD, Vujic JM, Cvetanovic AD, Radojkovic MM, Gadiuric SB, Zengin G. Onosma aucheriana: a source of biologically active molecules for novel food ingredients and pharmaceuticals. J Funct Foods. 2015;19:479–486.
  • 14. Chew YL, Chan EWL, Tan PL, Lim YY, Stanislas J, Goh JK. Assessment of phytochemical content, polyphenolic composition, antioxidant and antibacterial activities of Leguminosae medicinal plants in Peninsular Malaysia. BMC Complement Altern Med. 2011;11(1):1–10.
  • 15. Lamblin F, Travella S, Kuo YH, Van Montagu M, Heijde M. Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food?. Planta. 2019;1–18.
  • 16. Heydari H, Iscan GS, Eryilmaz M, Acikara OB, Sarialtin SY, Tekin M, Coban T. Antimicrobial and anti-Inflammatory activity of some Lathyrus L. (Fabaceae) species growing in Turkey. Turk J Pharm Sci. 2019;16:240–245.
  • 17. Ceylan R, Zengin G, Guler GO, Aktumsek A. Bioactive constituents of Lathyrus czeczottianus and ethyl acetate and water extracts and their biological activities: An endemic plant to Turkey. S Afr J Bot 2020:000:1–6.
  • 18. Pastor-Cavada E, Juan R, Pastor JE, Alaiz M, Vioque J. Antioxidant activity of seed polyphenols in fifteen wild Lathyrus species from South Spain. LWT - Food Sci Technol. 2009;42(3):705–709.
  • 19. Güneş F, Meriç C. Morphological, anatomical and karyological investigations of¸ the Turkish endemic species Lathyrus woronowii Bornm. (Fabaceae). Acta Botanica Croatica. 2017;76:132–137.
  • 20. Putnik P, Gabric D, Roohinejad S, Barba FJ, Granato D, Mallikarjunan K, Lorenzo JM, Kovacevic DB. An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem. 2019;276:680–691.
  • 21. El-Saber Batiha G, Magdy Beshbishy A, G. Wasef L, Elewa YHA, A. AlSagan A, Abd El-Hack ME, et al. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020b; 12:872.
  • 22. Doğan A, Atalay E, Doğan ANC, Aksu Kılıçle P, Mutlu N. İlaç ve zehir laboratuvar uygulama kitabı. In: Doğan A, editor. Ankara: Akademisyen Kitabevi; 2019:189–234.
  • 23. Slinkard K, Singleton VL. Total phenol analyses: automation and comparison with manual methods. Am J Enol Vitic1977;28(1):49–55.
  • 24. Badami S, Gupta MK, Suresh B. Antioxidant activity of the ethanolic extract of Strigaorobanchioides. J Ethnopharmacol. 2003;85(2–3):227–230.
  • 25. Kumar RS, Sivakumar T, Sunderam RS, Gupta M, Mazumdar UK, Gomathi P, et al. Antioxidant and antimicrobial activities of Bauhinia racemosa L. Stem bark. Braz J Med Biol Res. 2005;38:1015–1024.
  • 26. Gren LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JK, Tannenbaum SR. Analysis of nitrate, nitrite and 15N nitrate in biological fluids. Anal Biochem. 1982;126(1):131–138.
  • 27. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37(4):277–285.
  • 28. Luna LG. Manual of histologic staining methods of the armed forces institute of pathology. London: Mc Graw-Hill Book Comp; 1968.
  • 29. De Hertogh, AA, Karl Z. “Allium ornamental species” CRC Handbook of flowering. CRC Press; 2019:22–33.
  • 30. Sobolewska D, Michalska K, Podolak I, Grabowska K. Steroidal saponins from the genus Allium. Phytochemistry Reviews. 2016;15(1):1–35.
  • 31. Tepe B, Sokmen M, Akpulat HA, Sokmen A. In vitro antioxidant activities of the methanol extracts of five Allium species from Turkey. Food Chem. 2005;92(1):89–92.
  • 32. Ahmed R, Seth V, Pasha ST, Banerjee BD. Influence of dietary ginger (Zingiber officinale Rosc) on oxidative stress induced by malathion in rats. Food Chem Toxicol. 2000;38(5):443–450.
  • 33. Kafkas E., Bozdoğan A, Burgut A, Türemiş N, Kargı SP, Cabaroğlu T. Bazı üzümsü meyvelerde toplam fenol ve antosiyanin içerikleri. II. Ulusal Üzümsü Meyveler Sempozyumu. Konya:2006.
  • 34. Ahmad F, Anwar F, Hira S. Review on medicinal importance of Fabaceae family. Pharmacology online. 2016;3:151–157.
  • 35. Arabi Z, Sardari S. An investigation into the antifungal property of Fabaceae using bioinformatics tools. Avicenna J Med Biotechnol. 2010;2(2):93.
  • 36. Chanda S, Dudhatra S, Kaneria M. Antioxidative and antibacterial effects of seeds and fruit rind of nutraceutical plants belonging to the Fabaceae family. Food Funct. 2010;1(3):308-315.
  • 37. Alp H, Aytekin İ, Atakişi O, Öğün M. Ratlarda akut malathion toksisitesinin neden olduğu oksidatif stres üzerine kafeik asit fenil ester ve elajik asit’in etkileri. Ata Üniv Vet Bil Derg. 2011;6(2):117–24.
  • 38. Cadirci E, Suleyman H, Aksoy H, Halici Z, Ozgen U, Koc A et al. Effects of Onosma armeniacum root extract on ethanolinduced oxidative stress in stomach tissue of rats. Chem Biol Interact. 2007;170(1):40–48.
  • 39. Tosun A, Akkol EK, Bahadır O, Yeşilada E. Evaluation of anti-inflammatory and antinociceptive activities of some Onosma L. species growing in Turkey. J Ethnopharmacol. 2008;120(3):378–381.
  • 40. Singh D, Roy BK. Evaluation of malathion-induced cytogenetical effects and oxidative stress in plants using Allium test. Acta Physiol Plant. 2017;39(4):92.
  • 41. Selmi S, Rtibi K, Grami D, Sebai H, Marzouki L. Malathion, an organophosphate insecticide, provokes metabolic, histopathologic, and molecular disorders in liver and kidney in prepubertal male mice. Toxicol Rep. 2018;5:189–195.
  • 42. Shieh P, Jan CR, Liang WZ. The protective effects of the antioxidant N-acetylcysteine (NAC) against oxidative stress-associated apoptosis evoked by the organophosphorus insecticide malathion in normal human astrocytes. Toxicol. 2019;417:1–14.
  • 43. Omran OM, Omer OH. The effects of alpha-lipoic acid on the breast of female albino rats exposed to malathion: Histopathological and immunohistochemical study. Pathol Res Pract. 2015;211(6):462–469.
  • 44. Flehi-Slim I, Chargui I, Boughattas S, El Mabrouk A, Belaid-Nouira Y, Neffati F, Cheikh HB. Malathioninduced hepatotoxicity in male Wistar rats: biochemical and histopathological studies. Environ Sci Pollut Res. 2015;22(22):17828–17838.
  • 45. Ullah S, Li Z, Hasan Z, Khan SU, Fahad S. Malathion-induced oxidative stress leads to histopathological and biochemical toxicity in the liver of rohu (Labeorohita, Hamilton) at acute concentration. Ecotoxicol Environ Saf. 2018;161:270–280.
  • 46. Kalender S, Uzun FG, Durak D, Demir F, Kalender Y. Malathion-induced hepatotoxicity in rats: The effects of vitamins C and E. Food Chem Toxicol. 2010;48(2):633–638
There are 46 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

Dinçer Erdağ This is me

Abdullah Doğan This is me

Publication Date April 1, 2022
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Erdağ, D., & Doğan, A. (2022). The Effects of Allium Czelghauricum (Liliaceae), Lathyrus Karsianus (Fabaceae) and Onosma Nigricaule (Boraginaceae) Extracts on Oxidation Parameters in Malathion Treated Mice. Kafkas Journal of Medical Sciences, 12(1), 6-16.
AMA Erdağ D, Doğan A. The Effects of Allium Czelghauricum (Liliaceae), Lathyrus Karsianus (Fabaceae) and Onosma Nigricaule (Boraginaceae) Extracts on Oxidation Parameters in Malathion Treated Mice. KAFKAS TIP BİL DERG. April 2022;12(1):6-16.
Chicago Erdağ, Dinçer, and Abdullah Doğan. “The Effects of Allium Czelghauricum (Liliaceae), Lathyrus Karsianus (Fabaceae) and Onosma Nigricaule (Boraginaceae) Extracts on Oxidation Parameters in Malathion Treated Mice”. Kafkas Journal of Medical Sciences 12, no. 1 (April 2022): 6-16.
EndNote Erdağ D, Doğan A (April 1, 2022) The Effects of Allium Czelghauricum (Liliaceae), Lathyrus Karsianus (Fabaceae) and Onosma Nigricaule (Boraginaceae) Extracts on Oxidation Parameters in Malathion Treated Mice. Kafkas Journal of Medical Sciences 12 1 6–16.
IEEE D. Erdağ and A. Doğan, “The Effects of Allium Czelghauricum (Liliaceae), Lathyrus Karsianus (Fabaceae) and Onosma Nigricaule (Boraginaceae) Extracts on Oxidation Parameters in Malathion Treated Mice”, KAFKAS TIP BİL DERG, vol. 12, no. 1, pp. 6–16, 2022.
ISNAD Erdağ, Dinçer - Doğan, Abdullah. “The Effects of Allium Czelghauricum (Liliaceae), Lathyrus Karsianus (Fabaceae) and Onosma Nigricaule (Boraginaceae) Extracts on Oxidation Parameters in Malathion Treated Mice”. Kafkas Journal of Medical Sciences 12/1 (April 2022), 6-16.
JAMA Erdağ D, Doğan A. The Effects of Allium Czelghauricum (Liliaceae), Lathyrus Karsianus (Fabaceae) and Onosma Nigricaule (Boraginaceae) Extracts on Oxidation Parameters in Malathion Treated Mice. KAFKAS TIP BİL DERG. 2022;12:6–16.
MLA Erdağ, Dinçer and Abdullah Doğan. “The Effects of Allium Czelghauricum (Liliaceae), Lathyrus Karsianus (Fabaceae) and Onosma Nigricaule (Boraginaceae) Extracts on Oxidation Parameters in Malathion Treated Mice”. Kafkas Journal of Medical Sciences, vol. 12, no. 1, 2022, pp. 6-16.
Vancouver Erdağ D, Doğan A. The Effects of Allium Czelghauricum (Liliaceae), Lathyrus Karsianus (Fabaceae) and Onosma Nigricaule (Boraginaceae) Extracts on Oxidation Parameters in Malathion Treated Mice. KAFKAS TIP BİL DERG. 2022;12(1):6-16.