Review
BibTex RIS Cite

Adaptive Facades and Examination of Adaptive Facade Systems According To Working Mechanisms on Examples

Year 2024, Volume: 4 Issue: 1, 63 - 82, 30.06.2024

Abstract

The building envelope, as an interface capable of controlling the energy flow between the internal and external environments, plays a crucial role in improving the performance of buildings. Traditional facade systems are generally designed to be static, and as such, they are insufficient in addressing changing environmental conditions and user expectations. In contrast, adaptive facades (AF) are more flexible in terms of climate conditions, allowing for responses to temporary changes in the physical environment. Besides ensuring indoor comfort conditions, they can also positively impact the improvement of outdoor comfort in addressing various issues such as preventing urban heat islands and reducing air pollution. Despite all these advantages, adaptive facades, which are becoming more widely used internationally, have fewer application examples in Türkiye, and there is a lack of sufficient studies on this topic. This article aims to examine the concept of adaptive facades in detail, provide an overview of current literature, and evaluate the performance of various adaptive facade systems through international examples based on their working mechanisms. Within the scope of the study, a literature analysis was conducted by reviewing existing and up-to-date national and international literature on adaptive architecture and adaptive facades. As a result of the analysis, adaptive facades were classified into five main categories based on their working mechanisms: Hydraulic, Pneumatic, Motor-based, Material-based, and Energy-producing systems. Ten example buildings, with two examples from each system, were introduced and comparatively analyzed in terms of their adaptive facade characteristics. The literature analysis and comparisons revealed that the five adaptive systems have different advantages and disadvantages. Some systems offer high precision, fast response, efficiency, low cost, or environmental benefits, while others pose challenges in terms of installation and maintenance costs, energy consumption, and user intervention. This study aims to highlight the importance of selecting appropriate systems by considering the advantages and disadvantages of each system to improve the performance of adaptive facades.

References

  • Aelenei, D., Aelenei, L., ve Vieira, C. P. (2016). Adaptive Façade: concept, applications, research questions. Energy Procedia, 91, 269-275.
  • Alkhatib, H., Lemarchand, P., Norton, B., ve O’Sullivan, D. T. J. (2021). Deployment and control of adaptive building facades for energy generation, thermal insulation, ventilation and daylighting: A review. Applied Thermal Engineering, 185, 116331. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2020.116331
  • Andrade, T., Beirão, J., Arruda, A., ve Vinagre, N. (2024). Kinetic module in bimetal: A biomimetic approach adapting the kinetic behavior of bimetal for adaptive Façades. Materials ve Design, 239, 112807. https://doi.org/https://doi.org/10.1016/j.matdes.2024.112807
  • Archdaily. (2024). Bund Finance Centre / Foster + Partners + Heatherwick Studio. ArchDaily. https://www.archdaily.com/881511/bund-finance-centre-foster-plus-partners-plus-heatherwick-studio
  • Architonic. (2013). BIQ HOUSE Hamburg, Germany, 2013 . https://www.architonic.com/en/project/arup-biq-house/5101636
  • Arkitektuel. (2018). Media-TIC. https://www.arkitektuel.com/media-tic/
  • Attia, S., Bilir, S., Safy, T., Struck, C., Loonen, R., ve Goia, F. (2018). Current trends and future challenges in the performance assessment of adaptive façade systems. Energy and Buildings, 179. https://doi.org/10.1016/j.enbuild.2018.09.017
  • Blaise, R., ve Gilles, D. (2022). Adapted strategy for large-scale assessment of solar potential on facades in urban areas focusing on the reflection component. Solar Energy Advances, 2, 100030. https://doi.org/https://doi.org/10.1016/j.seja.2022.100030
  • Bolton, W. (2015). Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering. Pearson Education.
  • Borschewski, D., Voigt, M. P., Albrecht, S., Roth, D., Kreimeyer, M., ve Leistner, P. (2023). Why are adaptive facades not widely used in practice? Identifying ecological and economical benefits with life cycle assessment. Building and Environment, 232, 110069. https://doi.org/https://doi.org/10.1016/j.buildenv.2023.110069
  • BPIE. (2023). A call for faster and bolder action (2nd ed.), .
  • Brown, T., ve White, S. (2018). Shape-Memory Alloys in Building Design. Routledge.
  • Bui, D.-K., Nguyen, T. N., Ghazlan, A., Ngo, N.-T., ve Ngo, T. D. (2020). Enhancing building energy efficiency by adaptive façade: A computational optimization approach. Applied Energy, 265, 114797. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.114797
  • Catto Lucchino, E., ve Goia, F. (2023). Multi-domain model-based control of an adaptive façade based on a flexible double skin system. Energy and Buildings, 285, 112881. https://doi.org/https://doi.org/10.1016/j.enbuild.2023.112881
  • Claros-Marfil, L. J., Zetola, V., Padial, J. F., ve Lauret, B. (2022). Experimental-simulation methodology for estimation of thermal parameters of adaptive facades in mild climate conditions: A water-flow glazing case study. Journal of Building Engineering, 45, 103384. https://doi.org/https://doi.org/10.1016/j.jobe.2021.103384
  • Čurpek, J., Čekon, M., Šikula, O., ve Slávik, R. (2023). Thermodynamic responses of adaptive mechanisms in BiPV façade systems coupled with latent thermal energy storage. Energy and Buildings, 279, 112665. https://doi.org/https://doi.org/10.1016/j.enbuild.2022.112665
  • Çakır Aydoğan, Ö. (2018). Ses verileri etkileşimli dinamik adaptif bir cephe önerisi Sound shıeld.
  • Doroteo, J. (2024). Let Your Building “Breathe” With This Pneumatic Façade Technology . ArchDaily. https://www.archdaily.com/789230/let-your-building-to-breathe-with-this-pneumatic-facade-technology
  • Flor, J.-F., Liu, X., Sun, Y., Beccarelli, P., Chilton, J., ve Wu, Y. (2022). Switching daylight: Performance prediction of climate adaptive ETFE foil façades. Building and Environment, 209, 108650. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.108650
  • Fowler, M. (2015). Motor Control Electronics Handbook. McGraw-Hill Education.
  • Fox, M. (2016). Interactive architecture: adaptive world. Chronicle Books.
  • Fox, M., ve Kemp, M. (2009). Interactive Architecture. Princeton Architectural Press.
  • Heidari Matin, N., ve Eydgahi, A. (2022). Technologies used in responsive facade systems: a comparative study. Intelligent buildings international, 14(1), 54-73.
  • InDeWAG. (2020). InDeWAG-Industrial Development of Water Flow Glazing Systems. European Commission| CORDIS | H2020. https://cordis.europa.eu/project/id/680441
  • Jones, R. (2016). Smart Glass Technologies and Applications. Springer.
  • Juaristi, M., ve Krarti, M. (2024). Review of adaptive opaque façades and laboratory tests for the dynamic thermal performance characterization. Building and Environment, 249, 111123. https://doi.org/https://doi.org/10.1016/j.buildenv.2023.111123
  • Juaristi, M., Loonen, R., Isaia, F., Gómez-Acebo, T., ve Monge-Barrio, A. (2020). Dynamic Climate Analysis for early design stages: a new methodological approach to detect preferable Adaptive Opaque Façade Responses. Sustainable Cities and Society, 60, 102232. https://doi.org/https://doi.org/10.1016/j.scs.2020.102232
  • Jumabekova, A., Berger, J., Hubert, T., Dugué, A., Vogt Wu, T., Recht, T., ve Inard, C. (2023). A state-space model to control an adaptive facade prototype using data-driven techniques. Energy and Buildings, 296, 113391. https://doi.org/https://doi.org/10.1016/j.enbuild.2023.113391
  • Kolarevic, B., ve Parlac, V. (2015). Building Dynamics: Exploring Architecture of Change.
  • Koyaz, M., ve Ünlü, A. (2022). Human-centred performance criteria for adaptive façade design: Based on the results of a user experience survey. Building and Environment, 222, 109386. https://doi.org/https://doi.org/10.1016/j.buildenv.2022.109386
  • Kronenburg, R. (2007). Flexible: architecture that responds to change. (No Title).
  • Le, D. M., Park, D. Y., Baek, J., Karunyasopon, P., ve Chang, S. (2022). Multi-criteria decision making for adaptive façade optimal design in varied climates: Energy, daylight, occupants’ comfort, and outdoor view analysis. Building and Environment, 223, 109479. https://doi.org/https://doi.org/10.1016/j.buildenv.2022.109479
  • Lee, D., Cho, Y.-H., ve Jo, J.-H. (2021). Assessment of control strategy of adaptive façades for heating, cooling, lighting energy conservation and glare prevention. Energy and Buildings, 235, 110739. https://doi.org/https://doi.org/10.1016/j.enbuild.2021.110739
  • Loonen, R. C. G. M., Rico-Martinez, J. M., Favoino, F., Brzezicki, M., Menezo, C., La Ferla, G., ve (Laura) Aelenei, L. (2015). Design for façade adaptability: Towards a unified and systematic characterization.
  • Loonen, R. C. G. M., Trčka, M., Cóstola, D., ve Hensen, J. L. M. (2013). Climate adaptive building shells: State-of-the-art and future challenges. Renewable and sustainable energy reviews, 25, 483-493.
  • Majumdar, S. R. (1996). Pneumatic systems: principles and maintenance. (No Title).
  • Majumdar, S. R. (2003). Oil hydraulic systems: principles and maintenance. (No Title).
  • Meloni, M., Zhang, Q., Cai, J., ve Lee, D. S.-H. (2023). Origami-based adaptive facade for reducing reflected solar radiation in outdoor urban environments. Sustainable Cities and Society, 97, 104740. https://doi.org/https://doi.org/10.1016/j.scs.2023.104740
  • Nagy, Z., Svetozarevic, B., Jayathissa, P., Begle, M., Hofer, J., Lydon, G., Willmann, A., ve Schlueter, A. (2016). The adaptive solar facade: from concept to prototypes. Frontiers of Architectural Research, 5(2), 143-156.
  • Nie, Z., Chen, S., Zhang, S., Wu, H., Weiss, T., ve Zhao, L. (2023). Adaptive Façades Strategy: An architect-friendly computational approach based on co-simulation and white-box models for the early design stage. Energy and Buildings, 296, 113320. https://doi.org/https://doi.org/10.1016/j.enbuild.2023.113320
  • Norouziasas, A., Tabadkani, A., Rahif, R., Amer, M., van Dijk, D., Lamy, H., ve Attia, S. (2023). Implementation of ISO/DIS 52016-3 for adaptive façades: A case study of an office building. Building and Environment, 235, 110195. https://doi.org/https://doi.org/10.1016/j.buildenv.2023.110195
  • Parr, A. (2011). Hydraulics and pneumatics: a technician’s and engineer’s guide. Elsevier.
  • Perez, G., Sirvent, P., Sanchez-Garcia, J. A., ve Guerrero, A. (2021). Improved methodology for the characterization of thermochromic coatings for adaptive façades. Solar Energy, 230, 409-420. https://doi.org/https://doi.org/10.1016/j.solener.2021.10.062
  • Rizi, R. A., ve Eltaweel, A. (2021). A user detective adaptive facade towards improving visual and thermal comfort. Journal of Building Engineering, 33, 101554. https://doi.org/https://doi.org/10.1016/j.jobe.2020.101554
  • Shen, L., ve Han, Y. (2022). Optimizing the modular adaptive façade control strategy in open office space using integer programming and surrogate modelling. Energy and Buildings, 254, 111546. https://doi.org/https://doi.org/10.1016/j.enbuild.2021.111546
  • Smith, J. (2017). Advanced Materials in Construction. Wiley.
  • Tabadkani, A., Nikkhah Dehnavi, A., Mostafavi, F., ve Naeini, H. G. (2023). Targeting modular adaptive façade personalization in a shared office space using fuzzy logic and genetic optimization. Journal of Building Engineering, 69, 106118. https://doi.org/https://doi.org/10.1016/j.jobe.2023.106118
  • Tabadkani, A., Roetzel, A., Li, H. X., ve Tsangrassoulis, A. (2020). A review of automatic control strategies based on simulations for adaptive facades. Building and Environment, 175, 106801. https://doi.org/https://doi.org/10.1016/j.buildenv.2020.106801
  • Tabadkani, A., Roetzel, A., Li, H. X., ve Tsangrassoulis, A. (2021a). A review of occupant-centric control strategies for adaptive facades. Automation in Construction, 122, 103464. https://doi.org/https://doi.org/10.1016/j.autcon.2020.103464
  • Tabadkani, A., Roetzel, A., Li, H. X., ve Tsangrassoulis, A. (2021b). Design approaches and typologies of adaptive facades: A review. Automation in Construction, 121, 103450.
  • Tabadkani, A., Roetzel, A., Li, H. X., ve Tsangrassoulis, A. (2021c). Design approaches and typologies of adaptive facades: A review. Automation in Construction, 121, 103450. https://doi.org/https://doi.org/10.1016/j.autcon.2020.103450
  • Tabadkani, A., Roetzel, A., Li, H. X., ve Tsangrassoulis, A. (2022). Simulation-based personalized real-time control of adaptive facades in shared office spaces. Automation in Construction, 138, 104246. https://doi.org/https://doi.org/10.1016/j.autcon.2022.104246
  • Tabadkani, A., Tsangrassoulis, A., Roetzel, A., ve Li, H. X. (2020). Innovative control approaches to assess energy implications of adaptive facades based on simulation using EnergyPlus. Solar Energy, 206, 256-268. https://doi.org/https://doi.org/10.1016/j.solener.2020.05.087
  • Vinnitskaya, I. (2010, Ekim 17). Kiefer Technic Showroom / Ernst Giselbrecht + Partner. ArchDaily. https://www.archdaily.com/89270/kiefer-technic-showroom-ernst-giselbrecht-partner
  • Voigt, M., Roth, D., Blandini, L., ve Kreimeyer, M. (2024). An integrated design methodology for extrinsic adaptive façades – process model, standards, and case study. Journal of Building Engineering, 109810. https://doi.org/https://doi.org/10.1016/j.jobe.2024.109810
  • Wang, C., Ji, J., Yu, B., Xu, L., Wang, Q., ve Tian, X. (2022). Investigation on the operation strategy of a hybrid BIPV/T façade in plateau areas: An adaptive regulation method based on artificial neural network. Energy, 239, 122055. https://doi.org/https://doi.org/10.1016/j.energy.2021.122055
  • Wang, Y., Han, Y., Wu, Y., Korkina, E., Zhou, Z., ve Gagarin, V. (2022). An occupant-centric adaptive façade based on real-time and contactless glare and thermal discomfort estimation using deep learning algorithm. Building and Environment, 214, 108907. https://doi.org/https://doi.org/10.1016/j.buildenv.2022.108907
  • Wilkinson, C., ve Wood, A. (2012). Al Bahar Towers: External Automated Shading System: Jury Statement of CTBUH Innovation Award.
  • Winstanley, T. (2011, Ekim 2). “AD Classics: Institut du Monde Arabe / Enrique Jan + Jean Nouvel + Architecture-Studio”. ArchDaily. https://www.archdaily.com/162101/ad-classics-institut-du-monde-arabe-jean-nouvel
  • Zimmer, L. (2013, Mart 26). Mexico City’s Manuel Gea Gonzalez Hospital Has an Ornate Double Skin that Filters Air Pollution. Inhabitat.
  • Zuk, W., ve Clark, R. H. (1970). Kinetic architecture. Van Nostrand Reinhold Company.

Adaptif Cepheler ve Çalışma Mekânizmalarına Göre Adaptif Cephe Sistemlerinin Örnekler Üzerinden İncelenmesi

Year 2024, Volume: 4 Issue: 1, 63 - 82, 30.06.2024

Abstract

Yapı kabuğu iç ve dış ortam arasındaki enerji akışını kontrol edebilen arayüzler olarak binaların performansının iyileştirilmesinde önemli bir role sahiptir. Geleneksel cephe sistemleri genellikle statik olarak tasarlanmakta olup değişen çevresel koşulları ve kullanıcı beklentilerini karşılamada kısmen yetersiz kalmaktadır. Buna karşılık, adaptif cepheler (AF), iklim koşulları konusunda daha esnek olup, fiziksel çevre kontrolü bağlamında geçici değişikliklere yanıt verme olanağına sahiptir. İç mekân konfor koşullarını sağlamanın yanı sıra kentsel ısı adalarının önlenmesi, hava kirliliğinin azaltılması gibi çeşitli sorunların çözümünde dış mekân konforunun iyileştirilmelisini de olumlu yönde etkileyebilmektedir. Tüm bu avantajlara rağmen uluslararası ölçekte kullanımı yaygınlaşmaya başlayan ancak Türkiye’de daha az uygulama örneğine sahip adaptif cephelerle ilgili yeterli sayıda çalışma yer almamaktadır. Bu makalenin amacı adaptif cephe kavramını detaylı bir şekilde incelemek, güncel literatür özeti sunmak, çalışma mekânizmalarına göre çeşitli adaptif cephe sistemlerini uluslararası örnekler üzerinden inceleyerek adaptif cephe sistemlerinin performansını ortaya koymaktır. Çalışma kapsamında, öncelikle adaptif mimari ve adaptif cephe kavramlarına ilişkin mevcut ve güncel ulusal ve uluslararası literatür taranarak bir literatür analizi yapılmıştır. Analiz sonucunda, adaptif cepheler çalışma mekânizmalarına göre; Hidrolik, Pnömatik, Motor tabanlı, Malzeme tabanlı ve Enerji üreten sistemler olmak üzere beş ana başlıkta sınıflandırılmıştır. Sistemler ve her bir sisteme ait ikişer olmak üzere seçilen 10 örnek bina tanıtılarak adaptif cephe özellikleri bağlamında karşılaştırılmalı incelenmiştir. Yapılan literatür analizi ve karşılaştırmalar değerlendirildiğinde, 5 adaptif sistemin farklı avantaj ve dezavantajlara sahip olduğu görülmüştür. Bazı sistemler yüksek hassasiyet, hızlı tepki, verimlilik, düşük maliyet veya çevresel katkılar sunarken, bazıları kurulum ve bakım maliyetleri, enerji tüketimi ve kullanıcı müdahalesi gibi konularda çeşitli zorluklar içermektedir. Bu çalışma, adaptif cephelerin performansını iyileştirmek için her bir sistemin avantaj ve dezavantajlarını dikkate alarak uygun sistem seçiminin önemini vurgulamayı hedeflemektedir.

References

  • Aelenei, D., Aelenei, L., ve Vieira, C. P. (2016). Adaptive Façade: concept, applications, research questions. Energy Procedia, 91, 269-275.
  • Alkhatib, H., Lemarchand, P., Norton, B., ve O’Sullivan, D. T. J. (2021). Deployment and control of adaptive building facades for energy generation, thermal insulation, ventilation and daylighting: A review. Applied Thermal Engineering, 185, 116331. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2020.116331
  • Andrade, T., Beirão, J., Arruda, A., ve Vinagre, N. (2024). Kinetic module in bimetal: A biomimetic approach adapting the kinetic behavior of bimetal for adaptive Façades. Materials ve Design, 239, 112807. https://doi.org/https://doi.org/10.1016/j.matdes.2024.112807
  • Archdaily. (2024). Bund Finance Centre / Foster + Partners + Heatherwick Studio. ArchDaily. https://www.archdaily.com/881511/bund-finance-centre-foster-plus-partners-plus-heatherwick-studio
  • Architonic. (2013). BIQ HOUSE Hamburg, Germany, 2013 . https://www.architonic.com/en/project/arup-biq-house/5101636
  • Arkitektuel. (2018). Media-TIC. https://www.arkitektuel.com/media-tic/
  • Attia, S., Bilir, S., Safy, T., Struck, C., Loonen, R., ve Goia, F. (2018). Current trends and future challenges in the performance assessment of adaptive façade systems. Energy and Buildings, 179. https://doi.org/10.1016/j.enbuild.2018.09.017
  • Blaise, R., ve Gilles, D. (2022). Adapted strategy for large-scale assessment of solar potential on facades in urban areas focusing on the reflection component. Solar Energy Advances, 2, 100030. https://doi.org/https://doi.org/10.1016/j.seja.2022.100030
  • Bolton, W. (2015). Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering. Pearson Education.
  • Borschewski, D., Voigt, M. P., Albrecht, S., Roth, D., Kreimeyer, M., ve Leistner, P. (2023). Why are adaptive facades not widely used in practice? Identifying ecological and economical benefits with life cycle assessment. Building and Environment, 232, 110069. https://doi.org/https://doi.org/10.1016/j.buildenv.2023.110069
  • BPIE. (2023). A call for faster and bolder action (2nd ed.), .
  • Brown, T., ve White, S. (2018). Shape-Memory Alloys in Building Design. Routledge.
  • Bui, D.-K., Nguyen, T. N., Ghazlan, A., Ngo, N.-T., ve Ngo, T. D. (2020). Enhancing building energy efficiency by adaptive façade: A computational optimization approach. Applied Energy, 265, 114797. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.114797
  • Catto Lucchino, E., ve Goia, F. (2023). Multi-domain model-based control of an adaptive façade based on a flexible double skin system. Energy and Buildings, 285, 112881. https://doi.org/https://doi.org/10.1016/j.enbuild.2023.112881
  • Claros-Marfil, L. J., Zetola, V., Padial, J. F., ve Lauret, B. (2022). Experimental-simulation methodology for estimation of thermal parameters of adaptive facades in mild climate conditions: A water-flow glazing case study. Journal of Building Engineering, 45, 103384. https://doi.org/https://doi.org/10.1016/j.jobe.2021.103384
  • Čurpek, J., Čekon, M., Šikula, O., ve Slávik, R. (2023). Thermodynamic responses of adaptive mechanisms in BiPV façade systems coupled with latent thermal energy storage. Energy and Buildings, 279, 112665. https://doi.org/https://doi.org/10.1016/j.enbuild.2022.112665
  • Çakır Aydoğan, Ö. (2018). Ses verileri etkileşimli dinamik adaptif bir cephe önerisi Sound shıeld.
  • Doroteo, J. (2024). Let Your Building “Breathe” With This Pneumatic Façade Technology . ArchDaily. https://www.archdaily.com/789230/let-your-building-to-breathe-with-this-pneumatic-facade-technology
  • Flor, J.-F., Liu, X., Sun, Y., Beccarelli, P., Chilton, J., ve Wu, Y. (2022). Switching daylight: Performance prediction of climate adaptive ETFE foil façades. Building and Environment, 209, 108650. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.108650
  • Fowler, M. (2015). Motor Control Electronics Handbook. McGraw-Hill Education.
  • Fox, M. (2016). Interactive architecture: adaptive world. Chronicle Books.
  • Fox, M., ve Kemp, M. (2009). Interactive Architecture. Princeton Architectural Press.
  • Heidari Matin, N., ve Eydgahi, A. (2022). Technologies used in responsive facade systems: a comparative study. Intelligent buildings international, 14(1), 54-73.
  • InDeWAG. (2020). InDeWAG-Industrial Development of Water Flow Glazing Systems. European Commission| CORDIS | H2020. https://cordis.europa.eu/project/id/680441
  • Jones, R. (2016). Smart Glass Technologies and Applications. Springer.
  • Juaristi, M., ve Krarti, M. (2024). Review of adaptive opaque façades and laboratory tests for the dynamic thermal performance characterization. Building and Environment, 249, 111123. https://doi.org/https://doi.org/10.1016/j.buildenv.2023.111123
  • Juaristi, M., Loonen, R., Isaia, F., Gómez-Acebo, T., ve Monge-Barrio, A. (2020). Dynamic Climate Analysis for early design stages: a new methodological approach to detect preferable Adaptive Opaque Façade Responses. Sustainable Cities and Society, 60, 102232. https://doi.org/https://doi.org/10.1016/j.scs.2020.102232
  • Jumabekova, A., Berger, J., Hubert, T., Dugué, A., Vogt Wu, T., Recht, T., ve Inard, C. (2023). A state-space model to control an adaptive facade prototype using data-driven techniques. Energy and Buildings, 296, 113391. https://doi.org/https://doi.org/10.1016/j.enbuild.2023.113391
  • Kolarevic, B., ve Parlac, V. (2015). Building Dynamics: Exploring Architecture of Change.
  • Koyaz, M., ve Ünlü, A. (2022). Human-centred performance criteria for adaptive façade design: Based on the results of a user experience survey. Building and Environment, 222, 109386. https://doi.org/https://doi.org/10.1016/j.buildenv.2022.109386
  • Kronenburg, R. (2007). Flexible: architecture that responds to change. (No Title).
  • Le, D. M., Park, D. Y., Baek, J., Karunyasopon, P., ve Chang, S. (2022). Multi-criteria decision making for adaptive façade optimal design in varied climates: Energy, daylight, occupants’ comfort, and outdoor view analysis. Building and Environment, 223, 109479. https://doi.org/https://doi.org/10.1016/j.buildenv.2022.109479
  • Lee, D., Cho, Y.-H., ve Jo, J.-H. (2021). Assessment of control strategy of adaptive façades for heating, cooling, lighting energy conservation and glare prevention. Energy and Buildings, 235, 110739. https://doi.org/https://doi.org/10.1016/j.enbuild.2021.110739
  • Loonen, R. C. G. M., Rico-Martinez, J. M., Favoino, F., Brzezicki, M., Menezo, C., La Ferla, G., ve (Laura) Aelenei, L. (2015). Design for façade adaptability: Towards a unified and systematic characterization.
  • Loonen, R. C. G. M., Trčka, M., Cóstola, D., ve Hensen, J. L. M. (2013). Climate adaptive building shells: State-of-the-art and future challenges. Renewable and sustainable energy reviews, 25, 483-493.
  • Majumdar, S. R. (1996). Pneumatic systems: principles and maintenance. (No Title).
  • Majumdar, S. R. (2003). Oil hydraulic systems: principles and maintenance. (No Title).
  • Meloni, M., Zhang, Q., Cai, J., ve Lee, D. S.-H. (2023). Origami-based adaptive facade for reducing reflected solar radiation in outdoor urban environments. Sustainable Cities and Society, 97, 104740. https://doi.org/https://doi.org/10.1016/j.scs.2023.104740
  • Nagy, Z., Svetozarevic, B., Jayathissa, P., Begle, M., Hofer, J., Lydon, G., Willmann, A., ve Schlueter, A. (2016). The adaptive solar facade: from concept to prototypes. Frontiers of Architectural Research, 5(2), 143-156.
  • Nie, Z., Chen, S., Zhang, S., Wu, H., Weiss, T., ve Zhao, L. (2023). Adaptive Façades Strategy: An architect-friendly computational approach based on co-simulation and white-box models for the early design stage. Energy and Buildings, 296, 113320. https://doi.org/https://doi.org/10.1016/j.enbuild.2023.113320
  • Norouziasas, A., Tabadkani, A., Rahif, R., Amer, M., van Dijk, D., Lamy, H., ve Attia, S. (2023). Implementation of ISO/DIS 52016-3 for adaptive façades: A case study of an office building. Building and Environment, 235, 110195. https://doi.org/https://doi.org/10.1016/j.buildenv.2023.110195
  • Parr, A. (2011). Hydraulics and pneumatics: a technician’s and engineer’s guide. Elsevier.
  • Perez, G., Sirvent, P., Sanchez-Garcia, J. A., ve Guerrero, A. (2021). Improved methodology for the characterization of thermochromic coatings for adaptive façades. Solar Energy, 230, 409-420. https://doi.org/https://doi.org/10.1016/j.solener.2021.10.062
  • Rizi, R. A., ve Eltaweel, A. (2021). A user detective adaptive facade towards improving visual and thermal comfort. Journal of Building Engineering, 33, 101554. https://doi.org/https://doi.org/10.1016/j.jobe.2020.101554
  • Shen, L., ve Han, Y. (2022). Optimizing the modular adaptive façade control strategy in open office space using integer programming and surrogate modelling. Energy and Buildings, 254, 111546. https://doi.org/https://doi.org/10.1016/j.enbuild.2021.111546
  • Smith, J. (2017). Advanced Materials in Construction. Wiley.
  • Tabadkani, A., Nikkhah Dehnavi, A., Mostafavi, F., ve Naeini, H. G. (2023). Targeting modular adaptive façade personalization in a shared office space using fuzzy logic and genetic optimization. Journal of Building Engineering, 69, 106118. https://doi.org/https://doi.org/10.1016/j.jobe.2023.106118
  • Tabadkani, A., Roetzel, A., Li, H. X., ve Tsangrassoulis, A. (2020). A review of automatic control strategies based on simulations for adaptive facades. Building and Environment, 175, 106801. https://doi.org/https://doi.org/10.1016/j.buildenv.2020.106801
  • Tabadkani, A., Roetzel, A., Li, H. X., ve Tsangrassoulis, A. (2021a). A review of occupant-centric control strategies for adaptive facades. Automation in Construction, 122, 103464. https://doi.org/https://doi.org/10.1016/j.autcon.2020.103464
  • Tabadkani, A., Roetzel, A., Li, H. X., ve Tsangrassoulis, A. (2021b). Design approaches and typologies of adaptive facades: A review. Automation in Construction, 121, 103450.
  • Tabadkani, A., Roetzel, A., Li, H. X., ve Tsangrassoulis, A. (2021c). Design approaches and typologies of adaptive facades: A review. Automation in Construction, 121, 103450. https://doi.org/https://doi.org/10.1016/j.autcon.2020.103450
  • Tabadkani, A., Roetzel, A., Li, H. X., ve Tsangrassoulis, A. (2022). Simulation-based personalized real-time control of adaptive facades in shared office spaces. Automation in Construction, 138, 104246. https://doi.org/https://doi.org/10.1016/j.autcon.2022.104246
  • Tabadkani, A., Tsangrassoulis, A., Roetzel, A., ve Li, H. X. (2020). Innovative control approaches to assess energy implications of adaptive facades based on simulation using EnergyPlus. Solar Energy, 206, 256-268. https://doi.org/https://doi.org/10.1016/j.solener.2020.05.087
  • Vinnitskaya, I. (2010, Ekim 17). Kiefer Technic Showroom / Ernst Giselbrecht + Partner. ArchDaily. https://www.archdaily.com/89270/kiefer-technic-showroom-ernst-giselbrecht-partner
  • Voigt, M., Roth, D., Blandini, L., ve Kreimeyer, M. (2024). An integrated design methodology for extrinsic adaptive façades – process model, standards, and case study. Journal of Building Engineering, 109810. https://doi.org/https://doi.org/10.1016/j.jobe.2024.109810
  • Wang, C., Ji, J., Yu, B., Xu, L., Wang, Q., ve Tian, X. (2022). Investigation on the operation strategy of a hybrid BIPV/T façade in plateau areas: An adaptive regulation method based on artificial neural network. Energy, 239, 122055. https://doi.org/https://doi.org/10.1016/j.energy.2021.122055
  • Wang, Y., Han, Y., Wu, Y., Korkina, E., Zhou, Z., ve Gagarin, V. (2022). An occupant-centric adaptive façade based on real-time and contactless glare and thermal discomfort estimation using deep learning algorithm. Building and Environment, 214, 108907. https://doi.org/https://doi.org/10.1016/j.buildenv.2022.108907
  • Wilkinson, C., ve Wood, A. (2012). Al Bahar Towers: External Automated Shading System: Jury Statement of CTBUH Innovation Award.
  • Winstanley, T. (2011, Ekim 2). “AD Classics: Institut du Monde Arabe / Enrique Jan + Jean Nouvel + Architecture-Studio”. ArchDaily. https://www.archdaily.com/162101/ad-classics-institut-du-monde-arabe-jean-nouvel
  • Zimmer, L. (2013, Mart 26). Mexico City’s Manuel Gea Gonzalez Hospital Has an Ornate Double Skin that Filters Air Pollution. Inhabitat.
  • Zuk, W., ve Clark, R. H. (1970). Kinetic architecture. Van Nostrand Reinhold Company.
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Materials and Technology in Architecture, Architecture (Other)
Journal Section Review Articles
Authors

İrem Nur Taş 0000-0002-2845-6152

Filiz Şenkal Sezer 0000-0002-8376-5177

Early Pub Date June 30, 2024
Publication Date June 30, 2024
Submission Date May 30, 2024
Acceptance Date June 28, 2024
Published in Issue Year 2024 Volume: 4 Issue: 1

Cite

APA Taş, İ. N., & Şenkal Sezer, F. (2024). Adaptif Cepheler ve Çalışma Mekânizmalarına Göre Adaptif Cephe Sistemlerinin Örnekler Üzerinden İncelenmesi. KAPU Trakya Mimarlık Ve Tasarım Dergisi, 4(1), 63-82.