BibTex RIS Cite

Zaman Kesirli Beşinci Mertebeden Modifiye Edilmiş Sawada-Kotera Denkleminin Lie Simetri Analizi ve İlerleyen Dalga Çözümleri

Year 2018, Volume: 8 Issue: 2, 411 - 416, 01.06.2018

Abstract

Bu makalede Riemann-Liouville türevine sahip beşinci mertebeden zaman kesirli modifiye edilmiş Sawada-Kotera denkleminin Lie grup analizi araştırılmıştır. Lie grup teorisinin denkleme uygulanmasıyla iki boyutlu Lie cebri elde edilmiştir. Aşikar olmayan Lie simetrisinin kullanılmasıyla denklemin Erdelyi-Kober kesirli türev operatörü cinsinden beşinci mertebeden kesirli adi diferensiyel denkleme dönüştürülebileceği gösterilmiştir. Bunun yanında alt-denklem metodu kullanılarak denklemin bazı tam ilerleyen dalga çözümlerine ulaşılmıştır

References

  • Adem, AR., Khalique, CM. 2012. Symmetry reductions, exact solutions and conservation laws of a new coupled KdV system. Commun. Nonlinear Sci. Numer. Simul., 17: 3465-3475.
  • Adem, AR., Muatjetjeja, B. 2015. Conservation laws and exact solutions for a 2D Zakharov–Kuznetsov equation. App. Math. Lett., 48: 109-117.
  • Adem, AR., Lü, X. 2016. Travelling wave solutions of a two- dimensional generalized Sawada–Kotera equation. Nonlinear Dyn.,84(2): 915-922.
  • Adem, AR. 2016. The generalized (1+ 1)-dimensional and (2+ 1)-dimensional Ito equations: multiple exp-function algorithm and multiple wave solutions. Comput. Math. App.,71(6): 1248- 1258.
  • Bekir, A., Güner, O., Çevikel, AC. 2013a. Fractional Complex Transform and exp-Function Methods for Fractional Differential Equations. Abstr. Appl. Anal., Article ID 426462, 8 pages
  • Bekir, A. Güner, Ö. 2013b. Exact solutions of nonlinear fractional differential equations by (G’/G)-expansion method. Chin. Phys. B, 22(11): 110-202.
  • Bekir, A., Güner, Ö. 2014. The-expansion method using modified Riemann--Liouville derivative for some space-time fractional differential equations. Ain Shams Eng. J., 5(3): 959-965.
  • Bekir, A., Güner, O., Ünsal, O. 2015. The First Integral Method for Exact Solutions of Nonlinear Fractional Differential Equations. J. Comput. Nonlinear Dyn., 10: 021020-1.
  • Gazizov, RK., Kasatkin, AA., Lukashcuk, SY. 2009. Symmetry properties of fractional diffusion equations. Phys. Scr., T136, 014016.

On the Lie symmetry analysis and traveling wave solutions of time fractional fifth-order modified Sawada-Kotera equation

Year 2018, Volume: 8 Issue: 2, 411 - 416, 01.06.2018

Abstract

In this paper, we study Lie symmetry analysis of the time fractional fifth-order modified Sawada-Kotera equation FMSK with Riemann-Liouville derivative. Applying the adapted the Lie group theory to the equation under study, two dimensional Lie algebra is deduced. Using the obtained nontrivial Lie point symmetry, it is shown that the equation can be converted into a nonlinear fifth order ordinary differential equation of fractional order in the meaning of the Erdelyi-Kober fractional derivative operator. In addition, we construct some exact traveling solutions for the FMSK using the sub-equation method.

References

  • Adem, AR., Khalique, CM. 2012. Symmetry reductions, exact solutions and conservation laws of a new coupled KdV system. Commun. Nonlinear Sci. Numer. Simul., 17: 3465-3475.
  • Adem, AR., Muatjetjeja, B. 2015. Conservation laws and exact solutions for a 2D Zakharov–Kuznetsov equation. App. Math. Lett., 48: 109-117.
  • Adem, AR., Lü, X. 2016. Travelling wave solutions of a two- dimensional generalized Sawada–Kotera equation. Nonlinear Dyn.,84(2): 915-922.
  • Adem, AR. 2016. The generalized (1+ 1)-dimensional and (2+ 1)-dimensional Ito equations: multiple exp-function algorithm and multiple wave solutions. Comput. Math. App.,71(6): 1248- 1258.
  • Bekir, A., Güner, O., Çevikel, AC. 2013a. Fractional Complex Transform and exp-Function Methods for Fractional Differential Equations. Abstr. Appl. Anal., Article ID 426462, 8 pages
  • Bekir, A. Güner, Ö. 2013b. Exact solutions of nonlinear fractional differential equations by (G’/G)-expansion method. Chin. Phys. B, 22(11): 110-202.
  • Bekir, A., Güner, Ö. 2014. The-expansion method using modified Riemann--Liouville derivative for some space-time fractional differential equations. Ain Shams Eng. J., 5(3): 959-965.
  • Bekir, A., Güner, O., Ünsal, O. 2015. The First Integral Method for Exact Solutions of Nonlinear Fractional Differential Equations. J. Comput. Nonlinear Dyn., 10: 021020-1.
  • Gazizov, RK., Kasatkin, AA., Lukashcuk, SY. 2009. Symmetry properties of fractional diffusion equations. Phys. Scr., T136, 014016.
There are 9 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Emrullah Yasar This is me

Yakup Yıldırım This is me

Publication Date June 1, 2018
Published in Issue Year 2018 Volume: 8 Issue: 2

Cite

APA Yasar, E., & Yıldırım, Y. (2018). Zaman Kesirli Beşinci Mertebeden Modifiye Edilmiş Sawada-Kotera Denkleminin Lie Simetri Analizi ve İlerleyen Dalga Çözümleri. Karaelmas Fen Ve Mühendislik Dergisi, 8(2), 411-416.
AMA Yasar E, Yıldırım Y. Zaman Kesirli Beşinci Mertebeden Modifiye Edilmiş Sawada-Kotera Denkleminin Lie Simetri Analizi ve İlerleyen Dalga Çözümleri. Karaelmas Fen ve Mühendislik Dergisi. June 2018;8(2):411-416.
Chicago Yasar, Emrullah, and Yakup Yıldırım. “Zaman Kesirli Beşinci Mertebeden Modifiye Edilmiş Sawada-Kotera Denkleminin Lie Simetri Analizi Ve İlerleyen Dalga Çözümleri”. Karaelmas Fen Ve Mühendislik Dergisi 8, no. 2 (June 2018): 411-16.
EndNote Yasar E, Yıldırım Y (June 1, 2018) Zaman Kesirli Beşinci Mertebeden Modifiye Edilmiş Sawada-Kotera Denkleminin Lie Simetri Analizi ve İlerleyen Dalga Çözümleri. Karaelmas Fen ve Mühendislik Dergisi 8 2 411–416.
IEEE E. Yasar and Y. Yıldırım, “Zaman Kesirli Beşinci Mertebeden Modifiye Edilmiş Sawada-Kotera Denkleminin Lie Simetri Analizi ve İlerleyen Dalga Çözümleri”, Karaelmas Fen ve Mühendislik Dergisi, vol. 8, no. 2, pp. 411–416, 2018.
ISNAD Yasar, Emrullah - Yıldırım, Yakup. “Zaman Kesirli Beşinci Mertebeden Modifiye Edilmiş Sawada-Kotera Denkleminin Lie Simetri Analizi Ve İlerleyen Dalga Çözümleri”. Karaelmas Fen ve Mühendislik Dergisi 8/2 (June 2018), 411-416.
JAMA Yasar E, Yıldırım Y. Zaman Kesirli Beşinci Mertebeden Modifiye Edilmiş Sawada-Kotera Denkleminin Lie Simetri Analizi ve İlerleyen Dalga Çözümleri. Karaelmas Fen ve Mühendislik Dergisi. 2018;8:411–416.
MLA Yasar, Emrullah and Yakup Yıldırım. “Zaman Kesirli Beşinci Mertebeden Modifiye Edilmiş Sawada-Kotera Denkleminin Lie Simetri Analizi Ve İlerleyen Dalga Çözümleri”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 8, no. 2, 2018, pp. 411-6.
Vancouver Yasar E, Yıldırım Y. Zaman Kesirli Beşinci Mertebeden Modifiye Edilmiş Sawada-Kotera Denkleminin Lie Simetri Analizi ve İlerleyen Dalga Çözümleri. Karaelmas Fen ve Mühendislik Dergisi. 2018;8(2):411-6.