The Effect of Bacterial Cellulose Based Hydroxyapatite (BC-HAp) Nanocomposite on Bone Formation in Critical Sized Calvarial Defects in Rats
Yıl 2022,
Cilt: 12 Sayı: 2, 242 - 250, 24.12.2022
Aysan Lektemür Alpan
,
Nazime Dogan
,
Tuğba Hilal Denizli
,
Özlem Özmen
Öz
In this study, it was aimed to evaluate the potential bone regeneration effect of bacterial cellulose-hydroxyapatite (BC-HAp) composite in calvarial defects of critical size in rats. BC-HAp obtained from Komagataibacter xylinus S4 isolate was examined under a scanning electron microscope (SEM), and the concentration of Ca and P ions in its content was determined. BC-HAp obtained from calvarial defects in rats was freeze-dried and applied. Samples taken at the end of the 4th and 8th weeks were examined histopathologically. According to SEM results, BC fibers were in thin bundles and the fibril diameter was determined as 42.11. As HAp is included in the BC pellicle, high levels of Ca and P elements were detected in its content. At the end of the in-vivo experiments, no bone formation was found in the 4th week. Uniform connective tissue formation was observed in the BS-HAp group. At the end of the 8th week, new bone areas were observed in the BS-HAp group adjacent to the biomaterial. When BS-HAp obtained from Komagataibacter xylinus S4 isolate was used as a biomaterial, it induced new bone formation at 8 weeks
Kaynakça
- Ahn, S. J., Shin, Y. M., Kim, S. E., Jeong, S. I., Jeong, J. O., Park,
J. S., Gwon, H. J., Seo, D. E., Nho, Y. C., Kang, S. S., Kim,
C. Y., Huh, J. B., and Lim, Y. M. 2015. Characterization of
hydroxyapatite-coated bacterial cellulose scaffold for bone
tissue engineering. Biotechnol. Bioprocess Eng 20(5): 948-955.
DOI:10.1007/s12257-015-0176-z
- Alpan, A. L., Toker, H., and Ozer, H. 2016. Ozone Therapy
Enhances Osseous Healing in Rats With Diabetes With
Calvarial Defects: A Morphometric and Immunohistochemical
Study. J Periodontol, 87(8): 982-989. DOI:10.1902/
jop.2016.160009
- Araujo, A. S., Fernandes, A. B., Maciel, J. V., Netto Jde, N., and
Bolognese, A. M. 2015. New methodology for evaluating
osteoclastic activity induced by orthodontic load. J Appl Oral
Sci, 23(1): 19-25. DOI:10.1590/1678-775720140351
- Atila, D., Karatas, A., Evcin, A., Keskin, D., and Tezcaner, A.
2019. Bacterial cellulose-reinforced boron-doped hydroxyapatite/
gelatin scaffolds for bone tissue engineering. Cellulose,
26(18): 9765-9785. DOI:10.1007/s10570-019-02741-1
- Basu, P., Saha, N., Alexandrova, R., Andonova-Lilova,
B., Georgieva, M., Miloshev, G., and Saha, P. 2018.
Biocompatibility and Biological Efficiency of Inorganic
Calcium Filled Bacterial Cellulose Based Hydrogel Scaffolds
for Bone Bioengineering. Int J Mol Sci, 19(12). DOI:10.3390/
ijms19123980
- Boccaccini, A. R., and Blaker, J. J. 2005. Bioactive composite
materials for tissue engineering scaffolds. Expert Rev Med
Devices, 2(3): 303-317. DOI:10.1586/17434440.2.3.303
- Bramhill, J., Ross, S., and Ross, G. 2017. Bioactive
Nanocomposites for Tissue Repair and Regeneration: A
Review. Int J Environ Res Public Health, 14(1). DOI:10.3390/
ijerph14010066
- Cakar, F., Kati, A., Ozer, I., Demirbag, D. D., Sahin, F., and
Aytekin, A. O. 2014. Newly developed medium and strategy
for bacterial cellulose production. Biochem. Eng. J., 92: 35-40.
DOI:10.1016/j.bej.2014.07.002
- Czaja, W., Krystynowicz, A., Bielecki, S., and Brown, R.
M., Jr. 2006. Microbial cellulose--the natural power to
heal wounds. Biomaterials, 27(2): 145-151. DOI:10.1016/j.
biomaterials.2005.07.035
- de Oliveira Barud, H. G., da Silva, R. R., da Silva Barud,
H., Tercjak, A., Gutierrez, J., Lustri, W. R., de Oliveira,
O. B. J., and Ribeiro, S. J. L. 2016. A multipurpose natural
and renewable polymer in medical applications: Bacterial
cellulose. Carbohydr Polym, 153: 406-420. DOI:10.1016/j.
carbpol.2016.07.059
- Favi, P. M., Ospina, S. P., Kachole, M., Gao, M., Atehortua,
L., and Webster, T. J. 2016. Preparation and characterization
of biodegradable nano hydroxyapatite-bacterial cellulose
composites with well-defined honeycomb pore arrays for bone
tissue engineering applications. Cellulose, 23(2): 1263-1282.
DOI:10.1007/s10570-016-0867-4
- Fontana, J. D., Desouza, A. M., Fontana, C. K., Torriani, I. L.,
Moreschi, J. C., Gallotti, B. J., Desouza, S. J., Narcisco, G. P.,
Bichara, J. A., and Farah, L. F. X. 1990. Acetobacter Cellulose
Pellicle as a Temporary Skin Substitute. Appl. Biochem.
Biotechnol., 24(5): 253-264. DOI:10.1007/Bf02920250
- Gayathry, G., and Gopalaswamy, G. 2014. Production and
characterisation of microbial cellulosic fibre from Acetobacter
xylinum. IJFTR, 39(1):93-96.
- Grande, C. J., Torres, F. G., Gomez, C. M., and Bano, M. C.
2009. Nanocomposites of bacterial cellulose/hydroxyapatite
for biomedical applications. Acta Biomater., 5(5):1605-1615.
DOI:10.1016/j.actbio.2009.01.022
- Hong L., W. Y. L., Jia S.R., Huang Y., Gao C., Wan Y.Z. 2006.
Hydroxyapatite/bacterial cellulose composites synthesized
via a biomimetic route. Mater. Lett., 60(13-14):1710-1713.
DOI:10.1016/j.matlet.2005.12.004
- Jiang, P., Ran, J., Yan, P., Zheng, L., Shen, X., and Tong, H.
2018. Rational design of a high-strength bone scaffold
platform based on in situ hybridization of bacterial cellulose/
nano-hydroxyapatite framework and silk fibroin reinforcing
phase. J Biomater Sci Polym Ed, 29(2): 107-124. DOI:10.1080/
09205063.2017.1403149
- Jung, H. I., Lee, O. M., Jeong, J. H., Jeon, Y. D., Park, K. H.,
Kim, H. S., An, W. G., and Son, H. J. 2010. Production and
Characterization of Cellulose by Acetobacter sp V6 Using a
Cost-Effective Molasses-Corn Steep Liquor Medium. Appl.
Biochem. Biotechnol., 162(2): 486-497. DOI:10.1007/s12010-
009-8759-9
- Jung, I. H., Lim, H. C., Lee, E. U., Lee, J. S., Jung, U. W., &
Choi, S. H. 2015. Comparative analysis of carrier systems for
delivering bone morphogenetic proteins. J Periodontal Implant
Sci, 45(4):136-144. DOI:10.5051/jpis.2015.45.4.136
- Laurencin, C., Khan, Y., and El-Amin, S. F. 2006. Bone
graft substitutes. Expert Rev Med Devices, 3(1): 49-57.
DOI:10.1586/17434440.3.1.49
- Lee, S. H., Lim, Y. M., Jeong, S. I., An, S. J., Kang, S. S., Jeong,
C. M., and Huh, J. B. 2015. The effect of bacterial cellulose
membrane compared with collagen membrane on guided bone
regeneration. J Adv Prosthodont, 7(6): 484-495. DOI:10.4047/
jap.2015.7.6.484
- Liu, F., Wei, B., Xu, X., Ma, B., Zhang, S., Duan, J., Kong, Y.,
Yang, H., Sang, Y., Wang, S., Tang, W., Liu, C., and Liu, H.
2021. Nanocellulose-Reinforced Hydroxyapatite Nanobelt
Membrane as a Stem Cell Multi-Lineage Differentiation
Platform for Biomimetic Construction of Bioactive 3D
Osteoid Tissue In Vitro. Adv Healthc Mater, 10(8), e2001851.
DOI:10.1002/adhm.202001851
- Moore, W. R., Graves, S. E., and Bain, G. I. 2001. Synthetic
bone graft substitutes. ANZ J Surg, 71(6): 354-361.
- Muthukumar, T., Aravinthan, A., Sharmila, J., Kim, N. S.,
and Kim, J. H. 2016. Collagen/chitosan porous bone tissue
engineering composite scaffold incorporated with Ginseng
compound K. Carbohydr Polym, 152: 566-574. DOI:10.1016/j.
carbpol.2016.07.003
- Nandi, S. K., Roy, S., Mukherjee, P., Kundu, B., De, D. K., and
Basu, D. 2010. Orthopaedic applications of bone graft and
graft substitutes: a review. Indian J Med Res, 132: 15-30.
- Pigossi, S. C., de Oliveira, G. J. P. L., Finoti, L. S., Nepomuceno,
R., Spolidorio, L. C., Rossa, C., Ribeiro, S. J. L., Saska,
S., and Scarel-Caminaga, R. M. 2015. Bacterial cellulosehydroxyapatite
composites with osteogenic growth peptide
(OGP) or pentapeptide OGP on bone regeneration in criticalsize
calvarial defect model. J Biomed Mater Res A , 103(10):
3397-3406. DOI:10.1002/jbm.a.35472
- Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan,
D. L., Brittberg, M., and Gatenholm, P. 2005. Bacterial
cellulose as a potential scaffold for tissue engineering of
cartilage. Biomaterials, 26(4): 419-431. DOI:10.1016/j.
biomaterials.2004.02.049
- Tas, A. C. 2000. Synthesis of biomimetic Ca-hydroxyapatite
powders at 37 degrees C in synthetic body fluids. Biomaterials,
21(14): 1429-1438.
- Tolstunov, L., Hamrick, J. F. E., Broumand, V., Shilo, D., and
Rachmiel, A. 2019. Bone Augmentation Techniques for
Horizontal and Vertical Alveolar Ridge Deficiency in Oral
Implantology. Oral Maxillofac Surg Clin North Am, 31(2): 163-
191. DOI:10.1016/j.coms.2019.01.005
- Top, B., Uguzdogan, E., Dogan, N. M., Arslan, S., Bozbeyoglu,
N. N., Kabalay, B. 2021. Production and Characterization
of Bacterial Cellulose from Komagataeibacter xylinus Isolated
from Home-made Turkish Wine Vinegar. Cellulose Chem
Technol, 2: 13-17.
- Torres, F. G., Arroyo, J. J., and Troncoso, O. P. 2019. Bacterial
cellulose nanocomposites: An all-nano type of material. Mater
Sci Eng C Mater Biol Appl, 98: 1277-1293. DOI:10.1016/j.
msec.2019.01.064
- Vadaye Kheiry, E., Parivar, K., Baharara, J., Fazly Bazzaz, B.
S., and Iranbakhsh, A. 2018. The osteogenesis of bacterial
cellulose scaffold loaded with fisetin. Iran J Basic Med Sci,
21(9): 965-971. DOI:10.22038/IJBMS.2018.25465.6296
- Vazquez, A., Foresti, M. L., Cerrutti, P., and Galvagno, M. 2013.
Bacterial Cellulose from Simple and Low Cost Production
Media by Gluconacetobacter xylinus. J. Polym. Environ., 2013.
21(2): 545-554. DOI:10.1007/s10924-012-0541-3
- Wahid, F., Huang, L. H., Zhao, X. Q., Li, W. C., Wang, Y. Y.,
Jia, S. R., and Zhong, C. 2021. Bacterial cellulose and its
potential for biomedical applications. Biotechnol Adv, 53,
107856. DOI:10.1016/j.biotechadv.2021.107856
- Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S., and Cheng, L. 2007.
Biocompatibility and osteogenesis of biomimetic nanohydroxyapatite/
polyamide composite scaffolds for bone tissue
engineering. Biomaterials, 28(22): 3338-3348. DOI:10.1016/j.
biomaterials.2007.04.014
- Wang, S. S., Han, Y. H., Chen, J. L., Zhang, D. C., Shi, X.
X., Ye, Y. X., Chen, D. L., and Li, M. 2018. Insights into
Bacterial Cellulose Biosynthesis from Different Carbon
Sources and the Associated Biochemical Transformation
Pathways in Komagataeibacter sp. W1. Polymers (Basel), 10(9).
DOI:10.3390/polym10090963
Ratlarda Oluşturulan Kritik Boyutlu Kalvaryal Defektlerde Bakteriyel Selüloz Temelli Hidroksiapatit (BS-HAp) Nanokompozitinin Kemik Oluşumu Üzerine Etkisi
Yıl 2022,
Cilt: 12 Sayı: 2, 242 - 250, 24.12.2022
Aysan Lektemür Alpan
,
Nazime Dogan
,
Tuğba Hilal Denizli
,
Özlem Özmen
Öz
Bu çalışmada, sıçanlarda kritik boyuttaki kalvaryal defektlerde bakteriyel selüloz-hidroksiapatit (BS-HAp) kompozitinin kemik rejenerasyonundaki potansiyelinin değerlendirilmesi amaçlanmıştır. Komagataibacter xylinus S4 izolatından elde edilen BS-HAp taramalı elektron mikroskobunda (SEM) incelenerek içeriğindeki Ca ve P iyonlarının yoğunluğu tespit edilmiştir. Ratlarda oluşturulan kalvaryal defektlere elde edilen BS-HAp dondurulup kurutularak uygulanmıştır. 4. ve 8. haftanın sonunda alınan örnekler histopatolojik olarak incelenmiştir. SEM sonuçlarına göre BS lifleri, ince demetler halinde olup fibril çapı 42,11olarak tespit edilmiştir. HAp, BS pelikülüne dahil olarak içeriğinde yüksek oranda Ca ve P elementleri saptanmıştır. Yapılan in-vivo deneylerin sonunda 4. Haftada herhangi bir kemik oluşumuna rastlanmamıştır. BS-HAp grubunda düzgün bağ doku oluşumu gözlenmiştir. 8. haftanın sonunda BS-HAp grubunda biyomateryal komşuluğunda yeni kemik alanları izlenmiştir. Komagataibacter xylinus S4 izolatından elde edilen BS-HAp biyomateryal olarak kullanıldığında 8. haftada yeni kemik oluşumunu indüklemiştir
Kaynakça
- Ahn, S. J., Shin, Y. M., Kim, S. E., Jeong, S. I., Jeong, J. O., Park,
J. S., Gwon, H. J., Seo, D. E., Nho, Y. C., Kang, S. S., Kim,
C. Y., Huh, J. B., and Lim, Y. M. 2015. Characterization of
hydroxyapatite-coated bacterial cellulose scaffold for bone
tissue engineering. Biotechnol. Bioprocess Eng 20(5): 948-955.
DOI:10.1007/s12257-015-0176-z
- Alpan, A. L., Toker, H., and Ozer, H. 2016. Ozone Therapy
Enhances Osseous Healing in Rats With Diabetes With
Calvarial Defects: A Morphometric and Immunohistochemical
Study. J Periodontol, 87(8): 982-989. DOI:10.1902/
jop.2016.160009
- Araujo, A. S., Fernandes, A. B., Maciel, J. V., Netto Jde, N., and
Bolognese, A. M. 2015. New methodology for evaluating
osteoclastic activity induced by orthodontic load. J Appl Oral
Sci, 23(1): 19-25. DOI:10.1590/1678-775720140351
- Atila, D., Karatas, A., Evcin, A., Keskin, D., and Tezcaner, A.
2019. Bacterial cellulose-reinforced boron-doped hydroxyapatite/
gelatin scaffolds for bone tissue engineering. Cellulose,
26(18): 9765-9785. DOI:10.1007/s10570-019-02741-1
- Basu, P., Saha, N., Alexandrova, R., Andonova-Lilova,
B., Georgieva, M., Miloshev, G., and Saha, P. 2018.
Biocompatibility and Biological Efficiency of Inorganic
Calcium Filled Bacterial Cellulose Based Hydrogel Scaffolds
for Bone Bioengineering. Int J Mol Sci, 19(12). DOI:10.3390/
ijms19123980
- Boccaccini, A. R., and Blaker, J. J. 2005. Bioactive composite
materials for tissue engineering scaffolds. Expert Rev Med
Devices, 2(3): 303-317. DOI:10.1586/17434440.2.3.303
- Bramhill, J., Ross, S., and Ross, G. 2017. Bioactive
Nanocomposites for Tissue Repair and Regeneration: A
Review. Int J Environ Res Public Health, 14(1). DOI:10.3390/
ijerph14010066
- Cakar, F., Kati, A., Ozer, I., Demirbag, D. D., Sahin, F., and
Aytekin, A. O. 2014. Newly developed medium and strategy
for bacterial cellulose production. Biochem. Eng. J., 92: 35-40.
DOI:10.1016/j.bej.2014.07.002
- Czaja, W., Krystynowicz, A., Bielecki, S., and Brown, R.
M., Jr. 2006. Microbial cellulose--the natural power to
heal wounds. Biomaterials, 27(2): 145-151. DOI:10.1016/j.
biomaterials.2005.07.035
- de Oliveira Barud, H. G., da Silva, R. R., da Silva Barud,
H., Tercjak, A., Gutierrez, J., Lustri, W. R., de Oliveira,
O. B. J., and Ribeiro, S. J. L. 2016. A multipurpose natural
and renewable polymer in medical applications: Bacterial
cellulose. Carbohydr Polym, 153: 406-420. DOI:10.1016/j.
carbpol.2016.07.059
- Favi, P. M., Ospina, S. P., Kachole, M., Gao, M., Atehortua,
L., and Webster, T. J. 2016. Preparation and characterization
of biodegradable nano hydroxyapatite-bacterial cellulose
composites with well-defined honeycomb pore arrays for bone
tissue engineering applications. Cellulose, 23(2): 1263-1282.
DOI:10.1007/s10570-016-0867-4
- Fontana, J. D., Desouza, A. M., Fontana, C. K., Torriani, I. L.,
Moreschi, J. C., Gallotti, B. J., Desouza, S. J., Narcisco, G. P.,
Bichara, J. A., and Farah, L. F. X. 1990. Acetobacter Cellulose
Pellicle as a Temporary Skin Substitute. Appl. Biochem.
Biotechnol., 24(5): 253-264. DOI:10.1007/Bf02920250
- Gayathry, G., and Gopalaswamy, G. 2014. Production and
characterisation of microbial cellulosic fibre from Acetobacter
xylinum. IJFTR, 39(1):93-96.
- Grande, C. J., Torres, F. G., Gomez, C. M., and Bano, M. C.
2009. Nanocomposites of bacterial cellulose/hydroxyapatite
for biomedical applications. Acta Biomater., 5(5):1605-1615.
DOI:10.1016/j.actbio.2009.01.022
- Hong L., W. Y. L., Jia S.R., Huang Y., Gao C., Wan Y.Z. 2006.
Hydroxyapatite/bacterial cellulose composites synthesized
via a biomimetic route. Mater. Lett., 60(13-14):1710-1713.
DOI:10.1016/j.matlet.2005.12.004
- Jiang, P., Ran, J., Yan, P., Zheng, L., Shen, X., and Tong, H.
2018. Rational design of a high-strength bone scaffold
platform based on in situ hybridization of bacterial cellulose/
nano-hydroxyapatite framework and silk fibroin reinforcing
phase. J Biomater Sci Polym Ed, 29(2): 107-124. DOI:10.1080/
09205063.2017.1403149
- Jung, H. I., Lee, O. M., Jeong, J. H., Jeon, Y. D., Park, K. H.,
Kim, H. S., An, W. G., and Son, H. J. 2010. Production and
Characterization of Cellulose by Acetobacter sp V6 Using a
Cost-Effective Molasses-Corn Steep Liquor Medium. Appl.
Biochem. Biotechnol., 162(2): 486-497. DOI:10.1007/s12010-
009-8759-9
- Jung, I. H., Lim, H. C., Lee, E. U., Lee, J. S., Jung, U. W., &
Choi, S. H. 2015. Comparative analysis of carrier systems for
delivering bone morphogenetic proteins. J Periodontal Implant
Sci, 45(4):136-144. DOI:10.5051/jpis.2015.45.4.136
- Laurencin, C., Khan, Y., and El-Amin, S. F. 2006. Bone
graft substitutes. Expert Rev Med Devices, 3(1): 49-57.
DOI:10.1586/17434440.3.1.49
- Lee, S. H., Lim, Y. M., Jeong, S. I., An, S. J., Kang, S. S., Jeong,
C. M., and Huh, J. B. 2015. The effect of bacterial cellulose
membrane compared with collagen membrane on guided bone
regeneration. J Adv Prosthodont, 7(6): 484-495. DOI:10.4047/
jap.2015.7.6.484
- Liu, F., Wei, B., Xu, X., Ma, B., Zhang, S., Duan, J., Kong, Y.,
Yang, H., Sang, Y., Wang, S., Tang, W., Liu, C., and Liu, H.
2021. Nanocellulose-Reinforced Hydroxyapatite Nanobelt
Membrane as a Stem Cell Multi-Lineage Differentiation
Platform for Biomimetic Construction of Bioactive 3D
Osteoid Tissue In Vitro. Adv Healthc Mater, 10(8), e2001851.
DOI:10.1002/adhm.202001851
- Moore, W. R., Graves, S. E., and Bain, G. I. 2001. Synthetic
bone graft substitutes. ANZ J Surg, 71(6): 354-361.
- Muthukumar, T., Aravinthan, A., Sharmila, J., Kim, N. S.,
and Kim, J. H. 2016. Collagen/chitosan porous bone tissue
engineering composite scaffold incorporated with Ginseng
compound K. Carbohydr Polym, 152: 566-574. DOI:10.1016/j.
carbpol.2016.07.003
- Nandi, S. K., Roy, S., Mukherjee, P., Kundu, B., De, D. K., and
Basu, D. 2010. Orthopaedic applications of bone graft and
graft substitutes: a review. Indian J Med Res, 132: 15-30.
- Pigossi, S. C., de Oliveira, G. J. P. L., Finoti, L. S., Nepomuceno,
R., Spolidorio, L. C., Rossa, C., Ribeiro, S. J. L., Saska,
S., and Scarel-Caminaga, R. M. 2015. Bacterial cellulosehydroxyapatite
composites with osteogenic growth peptide
(OGP) or pentapeptide OGP on bone regeneration in criticalsize
calvarial defect model. J Biomed Mater Res A , 103(10):
3397-3406. DOI:10.1002/jbm.a.35472
- Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan,
D. L., Brittberg, M., and Gatenholm, P. 2005. Bacterial
cellulose as a potential scaffold for tissue engineering of
cartilage. Biomaterials, 26(4): 419-431. DOI:10.1016/j.
biomaterials.2004.02.049
- Tas, A. C. 2000. Synthesis of biomimetic Ca-hydroxyapatite
powders at 37 degrees C in synthetic body fluids. Biomaterials,
21(14): 1429-1438.
- Tolstunov, L., Hamrick, J. F. E., Broumand, V., Shilo, D., and
Rachmiel, A. 2019. Bone Augmentation Techniques for
Horizontal and Vertical Alveolar Ridge Deficiency in Oral
Implantology. Oral Maxillofac Surg Clin North Am, 31(2): 163-
191. DOI:10.1016/j.coms.2019.01.005
- Top, B., Uguzdogan, E., Dogan, N. M., Arslan, S., Bozbeyoglu,
N. N., Kabalay, B. 2021. Production and Characterization
of Bacterial Cellulose from Komagataeibacter xylinus Isolated
from Home-made Turkish Wine Vinegar. Cellulose Chem
Technol, 2: 13-17.
- Torres, F. G., Arroyo, J. J., and Troncoso, O. P. 2019. Bacterial
cellulose nanocomposites: An all-nano type of material. Mater
Sci Eng C Mater Biol Appl, 98: 1277-1293. DOI:10.1016/j.
msec.2019.01.064
- Vadaye Kheiry, E., Parivar, K., Baharara, J., Fazly Bazzaz, B.
S., and Iranbakhsh, A. 2018. The osteogenesis of bacterial
cellulose scaffold loaded with fisetin. Iran J Basic Med Sci,
21(9): 965-971. DOI:10.22038/IJBMS.2018.25465.6296
- Vazquez, A., Foresti, M. L., Cerrutti, P., and Galvagno, M. 2013.
Bacterial Cellulose from Simple and Low Cost Production
Media by Gluconacetobacter xylinus. J. Polym. Environ., 2013.
21(2): 545-554. DOI:10.1007/s10924-012-0541-3
- Wahid, F., Huang, L. H., Zhao, X. Q., Li, W. C., Wang, Y. Y.,
Jia, S. R., and Zhong, C. 2021. Bacterial cellulose and its
potential for biomedical applications. Biotechnol Adv, 53,
107856. DOI:10.1016/j.biotechadv.2021.107856
- Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S., and Cheng, L. 2007.
Biocompatibility and osteogenesis of biomimetic nanohydroxyapatite/
polyamide composite scaffolds for bone tissue
engineering. Biomaterials, 28(22): 3338-3348. DOI:10.1016/j.
biomaterials.2007.04.014
- Wang, S. S., Han, Y. H., Chen, J. L., Zhang, D. C., Shi, X.
X., Ye, Y. X., Chen, D. L., and Li, M. 2018. Insights into
Bacterial Cellulose Biosynthesis from Different Carbon
Sources and the Associated Biochemical Transformation
Pathways in Komagataeibacter sp. W1. Polymers (Basel), 10(9).
DOI:10.3390/polym10090963