Kuaterniyon Değerli g-Metrik Uzayda Yakınsaklık Üzerine
Yıl 2024,
Cilt: 14 Sayı: 3, 106 - 114, 25.11.2024
Saime Kolancı
,
Mehmet Gürdal
,
Ömer Kişi
Öz
Bu makalede, kuaterniyon değerli g-metrik uzayda çift dizilerin yakınsama kavramı tanıtılıp incelenmekte, bazı temel özellikler de ele alınmaktadır. Ayrıca, bu bağlamda istatistiksel yakınsama ayrıntılı olarak incelenip tanımlanmaktadır. Son bölümde ise, kuaterniyon değerli g-metrik uzayların istatistiksel yakınsaması ile güçlü toplanabilirlik arasındaki ilişkiye odaklanılmakta ve bu bağlantının sonuçları tartışılmaktadır.
Proje Numarası
This study was supported by Süleyman Demirel University Scientific Research Projects Coordination Unit. Project Number: FYL-2024-9258.
Kaynakça
- Abazari, R. 2021. Statistical convergence in probabilistic generalized metric spaces wrt strong topology. J. Inequal Appl., 2021(134): 1-11. Doi: 10.1186/s13660-021-02669-w
- Adewale, O.K., Olaleru, J., Akewe, H. 2019. Fixed point theorems on a quaternion-valued G metric spaces. Commun. Nonlinear Sci., 7(1): 73-81.
- Azam, A., Fisher, B., Khan, M. 2011. Common fixed point theorems in complex valued metric spaces. Numer. Funct. Anal. Optim., 32(3): 243-253. Doi:10.1080/01630563.2011.533046
- Choi, H., Kim, S., Yang, S.Y. 2018. Structure for g-metric spaces and related fixed point theorems. arXiv preprint arXiv:1804.03651.
- Dhage, B.C. 1992. Generalized metric space and mapping with fixed point. Bull. Calcutta Math. Soc., 84(1): 329-336
- Fast, H. 1951. Sur la convergence statistique. Colloq. Math., 2: 241-24.
- Gähler, S. 1966. Zur geometric 2-metriche raume. Rev. Roumaine Math. Pures Appl., 11: 664-669.
- Ha, K.S., Cho, Y.J., White, A. 1988. Strictly convex and strictly 2-convex linear 2-normed spaces. Math. Japon., 33: 375-384.
- Jan, A.H., Jalal, T. 2023. On the structure and statistical convergence of quaternion valued g-metric space: Bol. Soc. Paran Mat., to appear (2023)
- Khamsi, M.A. 2015. Generalized metric spaces: A survey. J. Fixed Point Theory Appl., 17, (2015), 455-475. Doi: 10.1007/s11784-015-0232-5
- Moricz, F. 2003. Statistical convergence of multiple sequences. Arch. Math., 81: 82-89. Doi: 10.1007/s00013-003-0506-9
- Mursaleen, M., Edely, O.H.H. 2003. Statistical convergence of double sequences. J. Math. Anal. Appl., 288(1): 223-231. Doi: 10.1016/j.jmaa.2003.08.004
- Mustafa, Z., Sims, B. 2003. Concerninig D-metric spaces. Proceedings of the Internatinal Conferences on Fixed Point Theory and Applications, Valencia (Spain), 189-198.
- Mustafa, Z., Sims, B. 2006. A new approach to generalized metric spaces. J. Nonlinear Convex Anal., 7(2): 289-297.
- Naidu, S.V.R., Rao, K.P.R., Rao, N.S. 2005. On the concepts of balls in a D-metric space. Int.J. Math. Math. Sci., 1: 133-141.
- Tripathy, B.C. 2003. Statistically convergent double sequences. Tamkang J. Math., 34(3): 231-237. Doi: 10.5556/j.tkjm.34.2003.314
On Convergence in Quaternion-Valued g-Metric Space
Yıl 2024,
Cilt: 14 Sayı: 3, 106 - 114, 25.11.2024
Saime Kolancı
,
Mehmet Gürdal
,
Ömer Kişi
Öz
This study presents and investigates the notion of convergence for double sequences in the quaternion-valued g-metric space, as well as a review of certain fundamental features. Moreover, statistical convergence in this context is examined and defined in detail. The final section, focusing on the relationship between the statistical convergence of quaternion-valued g-metric spaces and strong summability, delves into this connection and discusses its implications.
Proje Numarası
This study was supported by Süleyman Demirel University Scientific Research Projects Coordination Unit. Project Number: FYL-2024-9258.
Kaynakça
- Abazari, R. 2021. Statistical convergence in probabilistic generalized metric spaces wrt strong topology. J. Inequal Appl., 2021(134): 1-11. Doi: 10.1186/s13660-021-02669-w
- Adewale, O.K., Olaleru, J., Akewe, H. 2019. Fixed point theorems on a quaternion-valued G metric spaces. Commun. Nonlinear Sci., 7(1): 73-81.
- Azam, A., Fisher, B., Khan, M. 2011. Common fixed point theorems in complex valued metric spaces. Numer. Funct. Anal. Optim., 32(3): 243-253. Doi:10.1080/01630563.2011.533046
- Choi, H., Kim, S., Yang, S.Y. 2018. Structure for g-metric spaces and related fixed point theorems. arXiv preprint arXiv:1804.03651.
- Dhage, B.C. 1992. Generalized metric space and mapping with fixed point. Bull. Calcutta Math. Soc., 84(1): 329-336
- Fast, H. 1951. Sur la convergence statistique. Colloq. Math., 2: 241-24.
- Gähler, S. 1966. Zur geometric 2-metriche raume. Rev. Roumaine Math. Pures Appl., 11: 664-669.
- Ha, K.S., Cho, Y.J., White, A. 1988. Strictly convex and strictly 2-convex linear 2-normed spaces. Math. Japon., 33: 375-384.
- Jan, A.H., Jalal, T. 2023. On the structure and statistical convergence of quaternion valued g-metric space: Bol. Soc. Paran Mat., to appear (2023)
- Khamsi, M.A. 2015. Generalized metric spaces: A survey. J. Fixed Point Theory Appl., 17, (2015), 455-475. Doi: 10.1007/s11784-015-0232-5
- Moricz, F. 2003. Statistical convergence of multiple sequences. Arch. Math., 81: 82-89. Doi: 10.1007/s00013-003-0506-9
- Mursaleen, M., Edely, O.H.H. 2003. Statistical convergence of double sequences. J. Math. Anal. Appl., 288(1): 223-231. Doi: 10.1016/j.jmaa.2003.08.004
- Mustafa, Z., Sims, B. 2003. Concerninig D-metric spaces. Proceedings of the Internatinal Conferences on Fixed Point Theory and Applications, Valencia (Spain), 189-198.
- Mustafa, Z., Sims, B. 2006. A new approach to generalized metric spaces. J. Nonlinear Convex Anal., 7(2): 289-297.
- Naidu, S.V.R., Rao, K.P.R., Rao, N.S. 2005. On the concepts of balls in a D-metric space. Int.J. Math. Math. Sci., 1: 133-141.
- Tripathy, B.C. 2003. Statistically convergent double sequences. Tamkang J. Math., 34(3): 231-237. Doi: 10.5556/j.tkjm.34.2003.314