Research Article
BibTex RIS Cite

Microwave-Cured Pervious Geopolymer Concrete: Role of Aggregate Gradation

Year 2025, Volume: 15 Issue: 2, 117 - 131, 21.07.2025

Abstract

In this study, microwave technology was used as an alternative curing method, and the effect of aggregate gradation on the properties of fly ash-based pervious geopolymer concrete (PGC) were examined. Microwave-cured PGCs were produced, with one mixture containing only coarse aggregates in the 8-16 mm size range, while the others incorporated partial aggregate replacements-25% of the total aggregate content with finer aggregates in the 4-8 mm and 0.5-4 mm size ranges. For the sake of comparison, oven-cured PGC was also produced. It was determined that the compressive strength of 5 minutes microwave-cured concretes at 700-watt power level varied between 9.7 MPa-12.2 MPa, depending on the aggregate gradation, and these values were higher than the compressive strength (8.2 MPa) of the oven-cured concrete produced at 90°C for 24 hours. The water permeability of microwave-cured concretes decreased with the substitution of smaller-sized aggregate, and the mixture with the highest permeability was the oven-cured one due to the difference in paste structure between oven and microwave curing proven by scanning electron microscope (SEM) investigations. When the effect of aggregate gradation was examined in concretes produced with microwave curing, it was observed that a reduction in aggregate gradation resulted in decreased compressive strength and water permeability, accompanied by an increase in Cantabro abrasion losses. The results revealed that microwave technology has the potential for the production of pervious geopolymer building materials. Microwave technology reduced energy consumption and curing time by 91.4% and 99.7%, respectively.

References

  • AlShareedah, O., Nassiri, S. 2021. Pervious concrete mixture optimization, physical, and mechanical properties and pavement design: A review. J. Clean. Prod., 288: 125095. Doi: 10.1016/j.jclepro.2020.125095
  • Arafa, AS., Mohd Ali, AZ., Rahmat, SN., Lee, YL. 2017. Optimum mix for pervious geopolymer concrete (GEOCRETE) based on water permeability and compressive strength. MATEC Web Conf., 103: 01024. Doi: 10.1051/matecconf/201710301024
  • Aschoff, J., Partschefeld, S., Schneider, J., Osburg, A. 2024. Effect of microwaves on the rapid curing of metakaolin- and aluminum orthophosphate-based geopolymers. Materials, 17(2): 463. Doi: 10.3390/ma17020463
  • ASTM. 2013. Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion (ASTM C1747), USA.
  • ASTM. 2014. Standard Test Method for Density and Void Content of Freshly Mixed Pervious Concrete (ASTM C1688), USA.
  • Ayawanna, J., Poowancum, A. 2024. Enhancing flexural strength of metakaolin-based geopolymer reinforced with different types of fibers. Sustain. Chem. Pharm., 37: 101439. Doi: 10.1016/j.scp.2024.101439
  • Azad, AM., Anshul, A., Azad, N., Samarakoon, SMSMK., Yadav, R., Bherwani, H., Gupta, A., Gebremariam, KF. 2022. Pervious geopolymer concrete as sustainable material for environmental application. Mater. Lett., 318: 132176. Doi: 10.1016/j.matlet.2022.132176
  • Chen, X., Guo, Y., Ding, S., Zhang, H., Xia, F., Wang, J., Zhou, M. 2019. Utilization of red mud in geopolymer-based pervious concrete with function of adsorption of heavy metal ions. J. Clean. Prod., 207: 789–800. Doi: 10.1016/j.jclepro.2018.09.263
  • Chen, X., Niu, Z., Zhang, H., Guo, Y., Liu, M., Zhou, M. 2021. Study on the metakaolin-based geopolymer pervious concrete (MKGPC) and its removal capability of heavy metal ions. Int. J. Pavement Eng., 22(9): 1181-1192. Doi: 10.1080/10298436.2019.1667499
  • Chindaprasirt, P., Jitsangiam, P., Chalee, W., Rattanasak, U. 2021. Case study of the application of pervious fly ash geopolymer concrete for neutralization of acidic wastewater. Case Stud. Constr. Mater., 15: e00770. Doi: 10.1016/j.cscm.2021.e00770
  • Dong, Z., Ma, H., Feng, W., Nie, Y., Shi, H. 2022. Achieving superior high-strength geopolymer via the synergistic effect of traditional oven curing and microwave curing. Constr. Build. Mater., 357: 129406. Doi: 10.1016/j.conbuildmat.2022.129406
  • Elango, KS., Gopi, R., Saravanakumar, R., Rajeshkumar, V., Vivek, D., Raman, SV. 2021. Properties of pervious concrete – A state of the art review. Mat. Today Proc., 45: 2422–2425. Doi: 10.1016/j.matpr.2020.10.839
  • Ganesh, CA., Vinod Kumar, M., Kanniga Devi, R., Srikar, P., Prasad, S., Manoj Kumar, M., Sarath, RP. 2021. Pervious geopolymer concrete under ambient curing. Mat. Today Proc., 46: 2737–2741. Doi: 10.1016/j.matpr.2021.02.425
  • Graytee, A., Sanjayan, JG., Nazari, A. 2018. development of a high strength fly ash-based geopolymer in short time by using microwave curing. Ceram. Int., 44(7): 8216–8222. Doi: 10.1016/j.ceramint.2018.02.001
  • Guan, X., Luo, W., Liu, S., Hernandez, AG., Do, H., Li, B. 2023. Ultra-high early strength fly ash-based geopolymer paste cured by microwave radiation. Dev. Built Environ., 14: 100139. Doi: 10.1016/j.dibe.2023.100139
  • Gultekin, A., Ramyar, K. 2022. Effect of curing type on microstructure and compressive strength of geopolymer mortars. Ceram. Int., 48(11): 16156–16172. Doi: 10.1016/j.ceramint.2022.02.163
  • Huang, W., Wang, H. 2022. Multi-aspect engineering properties and sustainability impacts of geopolymer pervious concrete. Compos. B Eng., 242: 110035. Doi: 10.1016/j.compositesb.2022.110035
  • Huang, W., Wang, H. 2021. Geopolymer pervious concrete modified with granulated blast furnace slag: Microscale characterization and mechanical strength. J. Clean. Prod., 328: 129469. Doi: 10.1016/j.jclepro.2021.129469
  • Jivani, R., Panchal, VR., Bhavsar, JK. 2018. Performance assessment of pervious geopolymer concrete using metakaolin. Int. J. Sci. Res. Sci. Eng. Technol., 4(5): 227-233.
  • Khalil, WI., Frayyeh, QJ., Abed, HT. 2019. Properties of metakaolin based pervious geopolymer concrete. IOP Conf. Series: Mat. Sci. Eng., 518(2): 022056. Doi: 10.1088/1757-899X/518/2/022056
  • Khalil, WJ., Frayyeh, QT., Abed, H. 2021. Effect of ordinary Portland cement on some properties of pervious geopolymer concrete. Eng. Tech. J., 39(4A): 668–674. Doi: 10.30684/etj.v39i4A.1793
  • Luo, Y., Lv, Y., Wang, D., Jiang, Z., Xue, G. 2023. The Influence of coarse aggregate gradation on the mechanical properties, durability, and plantability of geopolymer pervious concrete. Constr. Build. Mater., 382: 131246. Doi: 10.1016/j.conbuildmat.2023.131246
  • Maguesvari, MU., Muthaiyan, P., Yugasini, S., Ammaiappan M. 2020. Experimental studies on pervious geopolymer concrete. IOP Conf. Ser.: Mater. Sci. Eng., 989: 012032. Doi: 10.1088/1757-899X/989/1/012032
  • Maguesvari, MU., Narasimha, VL. 2013. Studies on characterization of pervious concrete for pavement applications. Procedia Soc. Behav. Sci., 104: 198–207. Doi: 10.1016/j.sbspro.2013.11.112
  • Nanda, RP., Priya, N. 2024. Geopolymer as stabilizing materials in pavement constructions: A review. Clean. Waste Syst., 7: 100134. Doi: 10.1016/j.clwas.2024.100134
  • Nurruddin, MF., Haruna, S., Mohammed, BS., Shaaban, IG. 2018. Methods of curing geopolymer concrete: A review. Int. J. Adv. Appl. Sci., 5(1): 31–36. Doi: 10.21833/ijaas.2018.01.005
  • Raghwani, JR., Shah, D., Bhavsar, JK. 2016. Performance assessment of pervious concrete by using silica fume.” J. Civ. Eng. Environ. Technol., 3(4): 269-273.
  • Sanjaya, N., Saloma H., Juliantina, I., Nurjannah, SA. 2021. Compressive strength, permeability and porosity analysis of pervious concrete by variation of aggregate and compacting method. J. Phys. Conf. Ser., 1783(1): 012073. Doi: 10.1088/1742-6596/1783/1/012073
  • Sata, V., Wongsa, A., Chindaprasirt, P. 2013. Properties of pervious geopolymer concrete using recycled aggregates. Constr. Build. Mater., 42: 33–39. Doi: 10.1016/j.conbuildmat.2012.12.046
  • Shi, S., Li, H., Fabian, M., Sun, T., Grattan, KTV., Xu, D., Basheer, PAM., Bai, Y. 2016. Alkali-activated fly ash manufactured with multi-stage microwave curing. Fourth International Conference on Sustainable Construction Materials and Technologies, Las Vegas, USA.
  • Somaratna, J., Ravikumar, D., Neithalath, N. 2010. Response of alkali activated fly ash mortars to microwave curing. Cem. Concr. Res., 40(12): 1688–1696. Doi: 10.1016/j.cemconres.2010.08.010
  • Sun, Z., Lin, X., Vollpracht, A. 2018. Pervious concrete made of alkali activated slag and geopolymers. Constr. Build. Mater., 189: 797–803. Doi: 10.1016/j.conbuildmat.2018.09.067
  • Suwan, T., Fan, M. 2014. “Influence of OPC replacement and manufacturing procedures on the properties of self-cured geopolymer.” Constr. Build. Mater., 73: 551–561. Doi: 10.1016/j.conbuildmat.2014.09.065
  • Tempest, B., Sanusi, O., Gergely, J., Ogunro, V., Weggel, D. 2009. Compressive strength and embodied energy optimization of fly ash based geopolymer concrete. 2009 World of Coal Ash (WOCA) Conference, USA.
  • Tho-in, T., Sata, V., Chindaprasirt, P., Jaturapitakkul, C. 2012. Pervious high-calcium fly ash geopolymer concrete. Constr. Build. Mater., 30: 366–371. Doi: 10.1016/j.conbuildmat.2011.12.028
  • Yavuz, D., Yazici, S. 2023. Experimental study of aggregate size and gradation on pervious concretes' mechanic, hydraulic, and surface properties. Struct. Concr., 24:5451–5464. Doi: 10.1002/suco.202200234
  • Yilmazer Polat, B. 2023. The Influence of microwave curing on the strength of silica fume-added fly ash-based geopolymer mortars. J. Sustain. Constr. Mater. Technol., 8(3): 207–215. Doi: 10.47481/jscmt.1315096
  • Zaetang, Y., Wongsa, A., Sata, V., Chindaprasirt, P. 2015. Use of coal ash as geopolymer binder and coarse aggregate in pervious concrete. Constr. Build. Mater., 96: 289–295. Doi: 10.1016/j.conbuildmat.2015.08.076
  • Zhang, B., Liu, Y., Pan, Z., Li, L., Huang, Y., Wang, Z., Chen, J., Lao, W., Liu, F., Zhu, H., Xiong, Z. 2024. The microstructure and mechanical properties of recycled metakaolinite-based geopolymer: Dependence of recycled powder replacement ratio. J. Build. Eng., 85: 108730. Doi: 10.1016/j.jobe.2024.108730
  • Zhang, J., Sun, H., Shui, X., Chen, W. 2023. Experimental investigation on the properties of sustainable pervious concrete with different aggregate gradation. Int. J. Concr. Struct. Mater., 17:64. Doi: 10.1186/s40069-023-00625-0
  • Zhou, G., Luo, Y., Xue, G. 2023. Study on mechanical properties of metakaolin based geopolymer pervious concrete. E3S Web Conf., 439:02006. Doi: 10.1051/e3sconf/202343902006
  • Ziada, M., Tanyildizi, H., Uysal, M. 2024. The influence of carbon nanotube on underwater geopolymer paste based on metakaolin and slag. Constr. Build. Mater., 414: 135047. Doi: 10.1016/j.conbuildmat.2024.135047

Mikrodalga Kürü ile Üretilen Geçirimli Geopolimer Beton: Agrega Gradasyonunun Rolü

Year 2025, Volume: 15 Issue: 2, 117 - 131, 21.07.2025

Abstract

Bu çalışmada, mikrodalga teknolojisi alternatif bir kür yöntemi olarak kullanılmış ve agrega gradasyonunun uçucu kül esaslı geçirimli geopolimer beton özellikleri üzerindeki etkisi incelenmiştir. Bir tanesinde sadece 8-16 mm elek aralığındaki agrega kullanılırken, diğerlerinde toplam agrega miktarının %25’i, 4-8 mm ve 0.5-4 mm elek aralıklarındaki agregalarla ağırlıkça yer değiştirilerek farklı betonlar üretilmiştir. Karşılaştırma amacıyla, etüv kürüne tabi tutularak üretilen geçirimli geopolimer beton kullanılmıştır. Mikrodalga kürüyle, 700 watt güç seviyesinde 5 dakika kürlemeyle üretilen betonların basınç dayanımlarının, agrega gradasyonuna bağlı olarak 9.7 MPa-12.2 MPa arasında değiştiği ve bu değerlerin, 90°C’de 24 saat etüvde kürlenen serinin basınç dayanımından (8.2 MPa) daha yüksek olduğu belirlenmiştir. Agrega gradasyonunun küçülmesi, betonların su geçirimliliğini azaltırken; en yüksek su geçirgenliğinin etüv kürü ile üretilen seride elde edildiği belirlenmiştir. Elektron mikroskobu incelemeleri bu durumun iki kür yöntemi ile üretilen betonların hamur yapısındaki farklılıktan kaynaklandığını ortaya koymuştur. Agrega gradasyonunun mikrodalga kürlü betonlar üzerindeki etkisi incelendiğinde, agrega gradasyonunun küçülmesi ile basınç dayanımı ve su geçirgenliğinin azaldığı, Cantabro aşınma kayıplarının ise arttığı görülmüştür. Elde edilen sonuçlar, mikrodalga teknolojisinin geçirimli geopolimer yapı malzemesi üretimi için potansiyel taşıdığını göstermiştir. Mikrodalga kürleme yöntemi, enerji tüketimini %91.4 ve kür süresini %99.7 oranında azaltmıştır.

References

  • AlShareedah, O., Nassiri, S. 2021. Pervious concrete mixture optimization, physical, and mechanical properties and pavement design: A review. J. Clean. Prod., 288: 125095. Doi: 10.1016/j.jclepro.2020.125095
  • Arafa, AS., Mohd Ali, AZ., Rahmat, SN., Lee, YL. 2017. Optimum mix for pervious geopolymer concrete (GEOCRETE) based on water permeability and compressive strength. MATEC Web Conf., 103: 01024. Doi: 10.1051/matecconf/201710301024
  • Aschoff, J., Partschefeld, S., Schneider, J., Osburg, A. 2024. Effect of microwaves on the rapid curing of metakaolin- and aluminum orthophosphate-based geopolymers. Materials, 17(2): 463. Doi: 10.3390/ma17020463
  • ASTM. 2013. Standard Test Method for Determining Potential Resistance to Degradation of Pervious Concrete by Impact and Abrasion (ASTM C1747), USA.
  • ASTM. 2014. Standard Test Method for Density and Void Content of Freshly Mixed Pervious Concrete (ASTM C1688), USA.
  • Ayawanna, J., Poowancum, A. 2024. Enhancing flexural strength of metakaolin-based geopolymer reinforced with different types of fibers. Sustain. Chem. Pharm., 37: 101439. Doi: 10.1016/j.scp.2024.101439
  • Azad, AM., Anshul, A., Azad, N., Samarakoon, SMSMK., Yadav, R., Bherwani, H., Gupta, A., Gebremariam, KF. 2022. Pervious geopolymer concrete as sustainable material for environmental application. Mater. Lett., 318: 132176. Doi: 10.1016/j.matlet.2022.132176
  • Chen, X., Guo, Y., Ding, S., Zhang, H., Xia, F., Wang, J., Zhou, M. 2019. Utilization of red mud in geopolymer-based pervious concrete with function of adsorption of heavy metal ions. J. Clean. Prod., 207: 789–800. Doi: 10.1016/j.jclepro.2018.09.263
  • Chen, X., Niu, Z., Zhang, H., Guo, Y., Liu, M., Zhou, M. 2021. Study on the metakaolin-based geopolymer pervious concrete (MKGPC) and its removal capability of heavy metal ions. Int. J. Pavement Eng., 22(9): 1181-1192. Doi: 10.1080/10298436.2019.1667499
  • Chindaprasirt, P., Jitsangiam, P., Chalee, W., Rattanasak, U. 2021. Case study of the application of pervious fly ash geopolymer concrete for neutralization of acidic wastewater. Case Stud. Constr. Mater., 15: e00770. Doi: 10.1016/j.cscm.2021.e00770
  • Dong, Z., Ma, H., Feng, W., Nie, Y., Shi, H. 2022. Achieving superior high-strength geopolymer via the synergistic effect of traditional oven curing and microwave curing. Constr. Build. Mater., 357: 129406. Doi: 10.1016/j.conbuildmat.2022.129406
  • Elango, KS., Gopi, R., Saravanakumar, R., Rajeshkumar, V., Vivek, D., Raman, SV. 2021. Properties of pervious concrete – A state of the art review. Mat. Today Proc., 45: 2422–2425. Doi: 10.1016/j.matpr.2020.10.839
  • Ganesh, CA., Vinod Kumar, M., Kanniga Devi, R., Srikar, P., Prasad, S., Manoj Kumar, M., Sarath, RP. 2021. Pervious geopolymer concrete under ambient curing. Mat. Today Proc., 46: 2737–2741. Doi: 10.1016/j.matpr.2021.02.425
  • Graytee, A., Sanjayan, JG., Nazari, A. 2018. development of a high strength fly ash-based geopolymer in short time by using microwave curing. Ceram. Int., 44(7): 8216–8222. Doi: 10.1016/j.ceramint.2018.02.001
  • Guan, X., Luo, W., Liu, S., Hernandez, AG., Do, H., Li, B. 2023. Ultra-high early strength fly ash-based geopolymer paste cured by microwave radiation. Dev. Built Environ., 14: 100139. Doi: 10.1016/j.dibe.2023.100139
  • Gultekin, A., Ramyar, K. 2022. Effect of curing type on microstructure and compressive strength of geopolymer mortars. Ceram. Int., 48(11): 16156–16172. Doi: 10.1016/j.ceramint.2022.02.163
  • Huang, W., Wang, H. 2022. Multi-aspect engineering properties and sustainability impacts of geopolymer pervious concrete. Compos. B Eng., 242: 110035. Doi: 10.1016/j.compositesb.2022.110035
  • Huang, W., Wang, H. 2021. Geopolymer pervious concrete modified with granulated blast furnace slag: Microscale characterization and mechanical strength. J. Clean. Prod., 328: 129469. Doi: 10.1016/j.jclepro.2021.129469
  • Jivani, R., Panchal, VR., Bhavsar, JK. 2018. Performance assessment of pervious geopolymer concrete using metakaolin. Int. J. Sci. Res. Sci. Eng. Technol., 4(5): 227-233.
  • Khalil, WI., Frayyeh, QJ., Abed, HT. 2019. Properties of metakaolin based pervious geopolymer concrete. IOP Conf. Series: Mat. Sci. Eng., 518(2): 022056. Doi: 10.1088/1757-899X/518/2/022056
  • Khalil, WJ., Frayyeh, QT., Abed, H. 2021. Effect of ordinary Portland cement on some properties of pervious geopolymer concrete. Eng. Tech. J., 39(4A): 668–674. Doi: 10.30684/etj.v39i4A.1793
  • Luo, Y., Lv, Y., Wang, D., Jiang, Z., Xue, G. 2023. The Influence of coarse aggregate gradation on the mechanical properties, durability, and plantability of geopolymer pervious concrete. Constr. Build. Mater., 382: 131246. Doi: 10.1016/j.conbuildmat.2023.131246
  • Maguesvari, MU., Muthaiyan, P., Yugasini, S., Ammaiappan M. 2020. Experimental studies on pervious geopolymer concrete. IOP Conf. Ser.: Mater. Sci. Eng., 989: 012032. Doi: 10.1088/1757-899X/989/1/012032
  • Maguesvari, MU., Narasimha, VL. 2013. Studies on characterization of pervious concrete for pavement applications. Procedia Soc. Behav. Sci., 104: 198–207. Doi: 10.1016/j.sbspro.2013.11.112
  • Nanda, RP., Priya, N. 2024. Geopolymer as stabilizing materials in pavement constructions: A review. Clean. Waste Syst., 7: 100134. Doi: 10.1016/j.clwas.2024.100134
  • Nurruddin, MF., Haruna, S., Mohammed, BS., Shaaban, IG. 2018. Methods of curing geopolymer concrete: A review. Int. J. Adv. Appl. Sci., 5(1): 31–36. Doi: 10.21833/ijaas.2018.01.005
  • Raghwani, JR., Shah, D., Bhavsar, JK. 2016. Performance assessment of pervious concrete by using silica fume.” J. Civ. Eng. Environ. Technol., 3(4): 269-273.
  • Sanjaya, N., Saloma H., Juliantina, I., Nurjannah, SA. 2021. Compressive strength, permeability and porosity analysis of pervious concrete by variation of aggregate and compacting method. J. Phys. Conf. Ser., 1783(1): 012073. Doi: 10.1088/1742-6596/1783/1/012073
  • Sata, V., Wongsa, A., Chindaprasirt, P. 2013. Properties of pervious geopolymer concrete using recycled aggregates. Constr. Build. Mater., 42: 33–39. Doi: 10.1016/j.conbuildmat.2012.12.046
  • Shi, S., Li, H., Fabian, M., Sun, T., Grattan, KTV., Xu, D., Basheer, PAM., Bai, Y. 2016. Alkali-activated fly ash manufactured with multi-stage microwave curing. Fourth International Conference on Sustainable Construction Materials and Technologies, Las Vegas, USA.
  • Somaratna, J., Ravikumar, D., Neithalath, N. 2010. Response of alkali activated fly ash mortars to microwave curing. Cem. Concr. Res., 40(12): 1688–1696. Doi: 10.1016/j.cemconres.2010.08.010
  • Sun, Z., Lin, X., Vollpracht, A. 2018. Pervious concrete made of alkali activated slag and geopolymers. Constr. Build. Mater., 189: 797–803. Doi: 10.1016/j.conbuildmat.2018.09.067
  • Suwan, T., Fan, M. 2014. “Influence of OPC replacement and manufacturing procedures on the properties of self-cured geopolymer.” Constr. Build. Mater., 73: 551–561. Doi: 10.1016/j.conbuildmat.2014.09.065
  • Tempest, B., Sanusi, O., Gergely, J., Ogunro, V., Weggel, D. 2009. Compressive strength and embodied energy optimization of fly ash based geopolymer concrete. 2009 World of Coal Ash (WOCA) Conference, USA.
  • Tho-in, T., Sata, V., Chindaprasirt, P., Jaturapitakkul, C. 2012. Pervious high-calcium fly ash geopolymer concrete. Constr. Build. Mater., 30: 366–371. Doi: 10.1016/j.conbuildmat.2011.12.028
  • Yavuz, D., Yazici, S. 2023. Experimental study of aggregate size and gradation on pervious concretes' mechanic, hydraulic, and surface properties. Struct. Concr., 24:5451–5464. Doi: 10.1002/suco.202200234
  • Yilmazer Polat, B. 2023. The Influence of microwave curing on the strength of silica fume-added fly ash-based geopolymer mortars. J. Sustain. Constr. Mater. Technol., 8(3): 207–215. Doi: 10.47481/jscmt.1315096
  • Zaetang, Y., Wongsa, A., Sata, V., Chindaprasirt, P. 2015. Use of coal ash as geopolymer binder and coarse aggregate in pervious concrete. Constr. Build. Mater., 96: 289–295. Doi: 10.1016/j.conbuildmat.2015.08.076
  • Zhang, B., Liu, Y., Pan, Z., Li, L., Huang, Y., Wang, Z., Chen, J., Lao, W., Liu, F., Zhu, H., Xiong, Z. 2024. The microstructure and mechanical properties of recycled metakaolinite-based geopolymer: Dependence of recycled powder replacement ratio. J. Build. Eng., 85: 108730. Doi: 10.1016/j.jobe.2024.108730
  • Zhang, J., Sun, H., Shui, X., Chen, W. 2023. Experimental investigation on the properties of sustainable pervious concrete with different aggregate gradation. Int. J. Concr. Struct. Mater., 17:64. Doi: 10.1186/s40069-023-00625-0
  • Zhou, G., Luo, Y., Xue, G. 2023. Study on mechanical properties of metakaolin based geopolymer pervious concrete. E3S Web Conf., 439:02006. Doi: 10.1051/e3sconf/202343902006
  • Ziada, M., Tanyildizi, H., Uysal, M. 2024. The influence of carbon nanotube on underwater geopolymer paste based on metakaolin and slag. Constr. Build. Mater., 414: 135047. Doi: 10.1016/j.conbuildmat.2024.135047
There are 42 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Adil Gültekin 0000-0002-5267-5312

Publication Date July 21, 2025
Submission Date April 9, 2025
Acceptance Date May 26, 2025
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Gültekin, A. (2025). Microwave-Cured Pervious Geopolymer Concrete: Role of Aggregate Gradation. Karaelmas Fen Ve Mühendislik Dergisi, 15(2), 117-131. https://doi.org/10.7212/karaelmasfen.1672641
AMA Gültekin A. Microwave-Cured Pervious Geopolymer Concrete: Role of Aggregate Gradation. Karaelmas Fen ve Mühendislik Dergisi. July 2025;15(2):117-131. doi:10.7212/karaelmasfen.1672641
Chicago Gültekin, Adil. “Microwave-Cured Pervious Geopolymer Concrete: Role of Aggregate Gradation”. Karaelmas Fen Ve Mühendislik Dergisi 15, no. 2 (July 2025): 117-31. https://doi.org/10.7212/karaelmasfen.1672641.
EndNote Gültekin A (July 1, 2025) Microwave-Cured Pervious Geopolymer Concrete: Role of Aggregate Gradation. Karaelmas Fen ve Mühendislik Dergisi 15 2 117–131.
IEEE A. Gültekin, “Microwave-Cured Pervious Geopolymer Concrete: Role of Aggregate Gradation”, Karaelmas Fen ve Mühendislik Dergisi, vol. 15, no. 2, pp. 117–131, 2025, doi: 10.7212/karaelmasfen.1672641.
ISNAD Gültekin, Adil. “Microwave-Cured Pervious Geopolymer Concrete: Role of Aggregate Gradation”. Karaelmas Fen ve Mühendislik Dergisi 15/2 (July2025), 117-131. https://doi.org/10.7212/karaelmasfen.1672641.
JAMA Gültekin A. Microwave-Cured Pervious Geopolymer Concrete: Role of Aggregate Gradation. Karaelmas Fen ve Mühendislik Dergisi. 2025;15:117–131.
MLA Gültekin, Adil. “Microwave-Cured Pervious Geopolymer Concrete: Role of Aggregate Gradation”. Karaelmas Fen Ve Mühendislik Dergisi, vol. 15, no. 2, 2025, pp. 117-31, doi:10.7212/karaelmasfen.1672641.
Vancouver Gültekin A. Microwave-Cured Pervious Geopolymer Concrete: Role of Aggregate Gradation. Karaelmas Fen ve Mühendislik Dergisi. 2025;15(2):117-31.