Research Article
BibTex RIS Cite
Year 2021, Volume: 7 Issue: 1, 7 - 18, 28.06.2021

Abstract

References

  • Bayraktar, O. Y., Citoglu, G. S., Belgin, C. M., & Cetin, M. (2019). Investigation of the mechanical properties of marble dust and silica fume substituted portland cement samples under high temperature effect. Fresenius Environmental Bulletin, 28(5), 3865-3875.
  • Yao, W., Li, J., & Wu, K. (2003). Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cement and concrete research, 33(1), 27-30.
  • El-Hacha, R., & Rizkalla, S. H. (2004). Near-surface-mounted fiber-reinforced polymer reinforcements for flexural strengthening of concrete structures. Structural Journal, 101(5), 717-726.
  • Banthia, N., & Sappakittipakorn, M. (2007). Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cement and Concrete Research, 37(9), 1366-1372.
  • Hsie, M., Tu, C., & Song, P. S. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering: A, 494(1-2), 153-157.
  • Thomas, J., & Ramaswamy, A. (2007). Mechanical properties of steel fiber-reinforced concrete. Journal of materials in civil engineering, 19(5), 385-392.
  • Alomayri, T., & Low, I. M. (2013). Synthesis and characterization of mechanical properties in cotton fiber-reinforced geopolymer composites. Journal of Asian Ceramic Societies, 1(1), 30-34.
  • Chawla K.K., (1998). Fibrous Materials, Cambridge University Pres, Cambridge.
  • Löfgren, I. (2005). Fibre-reinforced Concrete for Industrial Construction-a fracture mechanics approach to material testing and structural analysis. Chalmers University of Technology.
  • ASTM A 820, (1996). Standart Specification for Steel Fibers for FiberReinforced Concrete, The American Society for Testing and Materials, U.S.A.
  • TS 10513, (1992). Beton Takviyesinde Kullanılan Çelik Teller, Türk Standartları Enstitüsü, Ankara.
  • Lamanna, A. J., Bank, L. C., & Scott, D. W. (2001). Flexural strengthening of reinforced concrete beams using fasteners and fiber-reinforced polymer strips. ACI Structural Journal, 98(3), 368-376.
  • Kwak, Y. K., Eberhard, M. O., Kim, W. S., & Kim, J. (2002). Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Structural Journal, 99(4), 530-538.
  • Toutanji, H. A., & Saafi, M. (2000). Flexural behavior of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars. Structural Journal, 97(5), 712-719.
  • Chen, J. F., & Teng, J. G. (2003). Shear capacity of fiber-reinforced polymer-strengthened reinforced concrete beams: Fiber reinforced polymer rupture. Journal of Structural Engineering, 129(5), 615-625.
  • Wang, Y. C., & Restrepo, J. I. (2001). Investigation of concentrically loaded reinforced concrete columns confined with glass fiber-reinforced polymer jackets. Structural Journal, 98(3), 377-385.
  • Hsie, M., Tu, C., & Song, P. S. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering: A, 494(1-2), 153-157.
  • Hanif, A., Lu, Z., Diao, S., Zeng, X., & Li, Z. (2017). Properties investigation of fiber reinforced cement-based composites incorporating cenosphere fillers. Construction and Building Materials, 140, 139-149.
  • ULM, F. J. Fire in Transport Tunnel/Research on Rapidly Heated Concrete. http://cist.mit.edu/projects/fire.htm.
  • Balaguru, P. N., & Shah, S. P. (1992). Fiber-reinforced cement composites.
  • Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and building materials, 94, 73-82.
  • Walraven, J. (1999). The evolution of concrete. Structural Concrete-London-Thomas Telford Limited-, 3-12.
  • Shah, S. P., & Ouyang, C. (1991). Mechanical behavior of fiber‐reinforced cement‐based composites. Journal of the American Ceramic Society, 74(11), 2727-2953.
  • Sim, J., & Park, C. (2005). Characteristics of basalt fiber as a strengthening material for concrete structures. Composites Part B: Engineering, 36(6-7), 504-512.
  • Wei, B., Cao, H., & Song, S. (2010). RETRACTED: environmental resistance and mechanical performance of basalt and glass fibers.
  • Liu, Q., Shaw, M. T., Parnas, R. S., & McDonnell, A. M. (2006). Investigation of basalt fiber composite mechanical properties for applications in transportation. Polymer composites, 27(1), 41-48.
  • Park, S. H., Kim, D. J., Ryu, G. S., & Koh, K. T. (2012). Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement and Concrete Composites, 34(2), 172-184.
  • Brena, S. F., Bramblett, R. M., Wood, S. L., & Kreger, M. E. (2003). Increasing flexural capacity of reinforced concrete beams using carbon fiber-reinforced polymer composites. Structural Journal, 100(1), 36-46.
  • Pellegrino, C., & Modena, C. (2002). Fiber reinforced polymer shear strengthening of reinforced concrete beams with transverse steel reinforcement. Journal of Composites for Construction, 6(2), 104-111.
  • Graybeal, B. A. (2007). Compressive behavior of ultra-high-performance fiber-reinforced concrete. ACI materials journal, 104(2), 146.
  • Chaallal, O., & Shahawy, M. (2000). Performance of fiber-reinforced polymer-wrapped reinforced concrete column under combined axial-flexural loading. Structural Journal, 97(4), 659-668.
  • Sahmaran, M., Yurtseven, A., & Yaman, I. O. (2005). Workability of hybrid fiber reinforced self-compacting concrete. Building and Environment, 40(12), 1672-1677.
  • De Lorenzis, L., & Nanni, A. (2001). Shear strengthening of reinforced concrete beams with near-surface mounted fiber-reinforced polymer rods. Structural Journal, 98(1), 60-68.
  • Kayali, O., Haque, M. N., & Zhu, B. (2003). Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cement and Concrete Composites, 25(2), 207-213.
  • Kim, S. B., Yi, N. H., Kim, H. Y., Kim, J. H. J., & Song, Y. C. (2010). Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and concrete composites, 32(3), 232-240.
  • Zhang, Z., Hsu, C. T. T., & Moren, J. (2004). Shear strengthening of reinforced concrete deep beams using carbon fiber reinforced polymer laminates. Journal of composites for construction, 8(5), 403-414.
  • Billington, S. L., & Yoon, J. K. (2004). Cyclic response of unbonded posttensioned precast columns with ductile fiber-reinforced concrete. Journal of Bridge Engineering, 9(4), 353-363.
  • Banthia, N., & Gupta, R. (2004). Hybrid fiber reinforced concrete (HyFRC): fiber synergy in high strength matrices. Materials and Structures, 37(10), 707-716.
  • Bournas, D. A., Lontou, P. V., Papanicolaou, C. G., & Triantafillou, T. C. (2007). Textile-reinforced mortar versus fiber-reinforced polymer confinement in reinforced concrete columns. ACI Structural Journal, 104(6), 740.
  • Olesen, J. F. (2001). Fictitious crack propagation in fiber-reinforced concrete beams. Journal of Engineering Mechanics, 127(3), 272-280.
  • Heffernan, P. J., & Erki, M. A. (2004). Fatigue behavior of reinforced concrete beams strengthened with carbon fiber reinforced plastic laminates. Journal of Composites for Construction, 8(2), 132-140.
  • Özdemir, D., Mecit, D., Seventekin, N., & Öktem, T. (2006). Cam lifleri. Tekstil ve Konfeksiyon, 281-286.
  • Balaguru, P. B. and Shah, S. P. 1992. Fiber-Reinforced Cement Composites.(First Edition). McGraw-Hill publishing, 530, New York.
  • Obaidat, Y. T. (2011). Structural retrofitting of reinforced concrete beams using carbon fibre reinforced polymer (Doctoral dissertation, Department of Construction Sciences, Structural Mechanics).
  • Bayraktar, O. Y., Kaplan, G., Gencel, O., Benli, A., & Sutcu, M. (2021). Physico-mechanical, durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag. Construction and Building Materials, 288, 123128.
  • Kaplan, G., & Bayraktar, O. Y. (2021). The effect of hemp fiber usage on the mechanical and physical properties of cement based mortars.
  • Yildizel, S. A., Yigit, M. E., & Kaplan, G. (2017). Glass fibre reinforced concrete rebound optimization. Computer Modeling in Engineering and Sciences, 113(2), 203-218.
  • Kaplan, G., Yıldızel, S. A., Öztürk, A. U., & Doğan, E. (2016). Demir Oksit Katkılı Pigmentler Kullanılarak Üretilen Cam Lifi Takviyeli Mimari Betonların Donma-Çözülme Dayanıklılığının İncelenmesi.

Investigation of the Usage Areas of Different Fiber Reinforced Concrete

Year 2021, Volume: 7 Issue: 1, 7 - 18, 28.06.2021

Abstract

Nowadays, the need for concrete to be used in different areas has led to some concrete technology developments. One of the developments in this area is the production of fibrous concrete. It is a material that has a wide application area in fiber concrete, concrete and reinforced concrete building applications. Because of this widespread usage, many studies have been done to improve the properties of concrete. Fiber Reinforced Concrete obtained with different types of fibers added to concrete is one of these studies. Fiber-reinforced concrete; hydraulic cement, aggregate and discontinuous dispersed fibers mixed with water. The fibers are not very effective on the compressive strength of concrete, but they significantly increase the concrete's flexural toughness. Polymer fibers used in concrete are mostly preferred to reduce shrinkage. Metallic fibers such as steel fiber are used to increase toughness. Also nowadays, it is produced with steel fibers and ultra-high-performance concrete (UHPC).

References

  • Bayraktar, O. Y., Citoglu, G. S., Belgin, C. M., & Cetin, M. (2019). Investigation of the mechanical properties of marble dust and silica fume substituted portland cement samples under high temperature effect. Fresenius Environmental Bulletin, 28(5), 3865-3875.
  • Yao, W., Li, J., & Wu, K. (2003). Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cement and concrete research, 33(1), 27-30.
  • El-Hacha, R., & Rizkalla, S. H. (2004). Near-surface-mounted fiber-reinforced polymer reinforcements for flexural strengthening of concrete structures. Structural Journal, 101(5), 717-726.
  • Banthia, N., & Sappakittipakorn, M. (2007). Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cement and Concrete Research, 37(9), 1366-1372.
  • Hsie, M., Tu, C., & Song, P. S. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering: A, 494(1-2), 153-157.
  • Thomas, J., & Ramaswamy, A. (2007). Mechanical properties of steel fiber-reinforced concrete. Journal of materials in civil engineering, 19(5), 385-392.
  • Alomayri, T., & Low, I. M. (2013). Synthesis and characterization of mechanical properties in cotton fiber-reinforced geopolymer composites. Journal of Asian Ceramic Societies, 1(1), 30-34.
  • Chawla K.K., (1998). Fibrous Materials, Cambridge University Pres, Cambridge.
  • Löfgren, I. (2005). Fibre-reinforced Concrete for Industrial Construction-a fracture mechanics approach to material testing and structural analysis. Chalmers University of Technology.
  • ASTM A 820, (1996). Standart Specification for Steel Fibers for FiberReinforced Concrete, The American Society for Testing and Materials, U.S.A.
  • TS 10513, (1992). Beton Takviyesinde Kullanılan Çelik Teller, Türk Standartları Enstitüsü, Ankara.
  • Lamanna, A. J., Bank, L. C., & Scott, D. W. (2001). Flexural strengthening of reinforced concrete beams using fasteners and fiber-reinforced polymer strips. ACI Structural Journal, 98(3), 368-376.
  • Kwak, Y. K., Eberhard, M. O., Kim, W. S., & Kim, J. (2002). Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Structural Journal, 99(4), 530-538.
  • Toutanji, H. A., & Saafi, M. (2000). Flexural behavior of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars. Structural Journal, 97(5), 712-719.
  • Chen, J. F., & Teng, J. G. (2003). Shear capacity of fiber-reinforced polymer-strengthened reinforced concrete beams: Fiber reinforced polymer rupture. Journal of Structural Engineering, 129(5), 615-625.
  • Wang, Y. C., & Restrepo, J. I. (2001). Investigation of concentrically loaded reinforced concrete columns confined with glass fiber-reinforced polymer jackets. Structural Journal, 98(3), 377-385.
  • Hsie, M., Tu, C., & Song, P. S. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering: A, 494(1-2), 153-157.
  • Hanif, A., Lu, Z., Diao, S., Zeng, X., & Li, Z. (2017). Properties investigation of fiber reinforced cement-based composites incorporating cenosphere fillers. Construction and Building Materials, 140, 139-149.
  • ULM, F. J. Fire in Transport Tunnel/Research on Rapidly Heated Concrete. http://cist.mit.edu/projects/fire.htm.
  • Balaguru, P. N., & Shah, S. P. (1992). Fiber-reinforced cement composites.
  • Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and building materials, 94, 73-82.
  • Walraven, J. (1999). The evolution of concrete. Structural Concrete-London-Thomas Telford Limited-, 3-12.
  • Shah, S. P., & Ouyang, C. (1991). Mechanical behavior of fiber‐reinforced cement‐based composites. Journal of the American Ceramic Society, 74(11), 2727-2953.
  • Sim, J., & Park, C. (2005). Characteristics of basalt fiber as a strengthening material for concrete structures. Composites Part B: Engineering, 36(6-7), 504-512.
  • Wei, B., Cao, H., & Song, S. (2010). RETRACTED: environmental resistance and mechanical performance of basalt and glass fibers.
  • Liu, Q., Shaw, M. T., Parnas, R. S., & McDonnell, A. M. (2006). Investigation of basalt fiber composite mechanical properties for applications in transportation. Polymer composites, 27(1), 41-48.
  • Park, S. H., Kim, D. J., Ryu, G. S., & Koh, K. T. (2012). Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement and Concrete Composites, 34(2), 172-184.
  • Brena, S. F., Bramblett, R. M., Wood, S. L., & Kreger, M. E. (2003). Increasing flexural capacity of reinforced concrete beams using carbon fiber-reinforced polymer composites. Structural Journal, 100(1), 36-46.
  • Pellegrino, C., & Modena, C. (2002). Fiber reinforced polymer shear strengthening of reinforced concrete beams with transverse steel reinforcement. Journal of Composites for Construction, 6(2), 104-111.
  • Graybeal, B. A. (2007). Compressive behavior of ultra-high-performance fiber-reinforced concrete. ACI materials journal, 104(2), 146.
  • Chaallal, O., & Shahawy, M. (2000). Performance of fiber-reinforced polymer-wrapped reinforced concrete column under combined axial-flexural loading. Structural Journal, 97(4), 659-668.
  • Sahmaran, M., Yurtseven, A., & Yaman, I. O. (2005). Workability of hybrid fiber reinforced self-compacting concrete. Building and Environment, 40(12), 1672-1677.
  • De Lorenzis, L., & Nanni, A. (2001). Shear strengthening of reinforced concrete beams with near-surface mounted fiber-reinforced polymer rods. Structural Journal, 98(1), 60-68.
  • Kayali, O., Haque, M. N., & Zhu, B. (2003). Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cement and Concrete Composites, 25(2), 207-213.
  • Kim, S. B., Yi, N. H., Kim, H. Y., Kim, J. H. J., & Song, Y. C. (2010). Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and concrete composites, 32(3), 232-240.
  • Zhang, Z., Hsu, C. T. T., & Moren, J. (2004). Shear strengthening of reinforced concrete deep beams using carbon fiber reinforced polymer laminates. Journal of composites for construction, 8(5), 403-414.
  • Billington, S. L., & Yoon, J. K. (2004). Cyclic response of unbonded posttensioned precast columns with ductile fiber-reinforced concrete. Journal of Bridge Engineering, 9(4), 353-363.
  • Banthia, N., & Gupta, R. (2004). Hybrid fiber reinforced concrete (HyFRC): fiber synergy in high strength matrices. Materials and Structures, 37(10), 707-716.
  • Bournas, D. A., Lontou, P. V., Papanicolaou, C. G., & Triantafillou, T. C. (2007). Textile-reinforced mortar versus fiber-reinforced polymer confinement in reinforced concrete columns. ACI Structural Journal, 104(6), 740.
  • Olesen, J. F. (2001). Fictitious crack propagation in fiber-reinforced concrete beams. Journal of Engineering Mechanics, 127(3), 272-280.
  • Heffernan, P. J., & Erki, M. A. (2004). Fatigue behavior of reinforced concrete beams strengthened with carbon fiber reinforced plastic laminates. Journal of Composites for Construction, 8(2), 132-140.
  • Özdemir, D., Mecit, D., Seventekin, N., & Öktem, T. (2006). Cam lifleri. Tekstil ve Konfeksiyon, 281-286.
  • Balaguru, P. B. and Shah, S. P. 1992. Fiber-Reinforced Cement Composites.(First Edition). McGraw-Hill publishing, 530, New York.
  • Obaidat, Y. T. (2011). Structural retrofitting of reinforced concrete beams using carbon fibre reinforced polymer (Doctoral dissertation, Department of Construction Sciences, Structural Mechanics).
  • Bayraktar, O. Y., Kaplan, G., Gencel, O., Benli, A., & Sutcu, M. (2021). Physico-mechanical, durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag. Construction and Building Materials, 288, 123128.
  • Kaplan, G., & Bayraktar, O. Y. (2021). The effect of hemp fiber usage on the mechanical and physical properties of cement based mortars.
  • Yildizel, S. A., Yigit, M. E., & Kaplan, G. (2017). Glass fibre reinforced concrete rebound optimization. Computer Modeling in Engineering and Sciences, 113(2), 203-218.
  • Kaplan, G., Yıldızel, S. A., Öztürk, A. U., & Doğan, E. (2016). Demir Oksit Katkılı Pigmentler Kullanılarak Üretilen Cam Lifi Takviyeli Mimari Betonların Donma-Çözülme Dayanıklılığının İncelenmesi.
There are 48 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Abdelwahab Z.a. Altera This is me 0000-0002-4805-648X

Oğuzhan Yavuz Bayraktar 0000-0003-0578-6965

Burak Bodur 0000-0001-9983-1602

Gökhan Kaplan 0000-0001-6067-7337

Publication Date June 28, 2021
Submission Date April 6, 2021
Published in Issue Year 2021 Volume: 7 Issue: 1

Cite

APA Altera, A. Z., Bayraktar, O. Y., Bodur, B., Kaplan, G. (2021). Investigation of the Usage Areas of Different Fiber Reinforced Concrete. Kastamonu University Journal of Engineering and Sciences, 7(1), 7-18.
AMA Altera AZ, Bayraktar OY, Bodur B, Kaplan G. Investigation of the Usage Areas of Different Fiber Reinforced Concrete. KUJES. June 2021;7(1):7-18.
Chicago Altera, Abdelwahab Z.a., Oğuzhan Yavuz Bayraktar, Burak Bodur, and Gökhan Kaplan. “Investigation of the Usage Areas of Different Fiber Reinforced Concrete”. Kastamonu University Journal of Engineering and Sciences 7, no. 1 (June 2021): 7-18.
EndNote Altera AZ, Bayraktar OY, Bodur B, Kaplan G (June 1, 2021) Investigation of the Usage Areas of Different Fiber Reinforced Concrete. Kastamonu University Journal of Engineering and Sciences 7 1 7–18.
IEEE A. Z. Altera, O. Y. Bayraktar, B. Bodur, and G. Kaplan, “Investigation of the Usage Areas of Different Fiber Reinforced Concrete”, KUJES, vol. 7, no. 1, pp. 7–18, 2021.
ISNAD Altera, Abdelwahab Z.a. et al. “Investigation of the Usage Areas of Different Fiber Reinforced Concrete”. Kastamonu University Journal of Engineering and Sciences 7/1 (June 2021), 7-18.
JAMA Altera AZ, Bayraktar OY, Bodur B, Kaplan G. Investigation of the Usage Areas of Different Fiber Reinforced Concrete. KUJES. 2021;7:7–18.
MLA Altera, Abdelwahab Z.a. et al. “Investigation of the Usage Areas of Different Fiber Reinforced Concrete”. Kastamonu University Journal of Engineering and Sciences, vol. 7, no. 1, 2021, pp. 7-18.
Vancouver Altera AZ, Bayraktar OY, Bodur B, Kaplan G. Investigation of the Usage Areas of Different Fiber Reinforced Concrete. KUJES. 2021;7(1):7-18.

18397   |   18396|