Research Article
BibTex RIS Cite

Estimation of Aboveground Carbon Using Different Remote Sensing Data and Modelling Techniques

Year 2025, Volume: 25 Issue: 2, 152 - 176, 30.09.2025
https://doi.org/10.17475/kastorman.1787120

Abstract

Aim of study: Forests contribute significantly to the global climate by acting as carbon sinks and controlling energy and water flows. This study aimed to model the aboveground carbon (AGC) of pure Scots pine stands within the boundaries of the Sinop Regional Directorate of Forestry in Turkey, using data obtained from various sensor images, including Sentinel-1 (S1), Sentinel-2 (S2), Landsat 8 OLI (L8) and Unmanned Aerial Vehicle (UAV) images, with artificial neural network (ANN) and multiple linear regression (MLR) modeling techniques.
Area of study: The study was carried out within pure Scots pine stands located in Sinop Regional Directorate of Forestry.
Material and method: a total of 184 sample plots were taken and field measurements were made in these sample plots. 80% of the sample plots (150) were used to fit the models and 20% (34) were used to test the models. The AGC values of each sample plot were estimated with the allometric equation. Brightness values and backscatter values from S1, vegetation indices, reflectance and texture values obtained for different window sizes (3x3, 5x5, 7x7 and 11x11) and different orientations (0°, 45°, 90° and 135°) from L8 and S2, and vegetation indices, band reflectance and digital band obtained from UAV were used in the study.
Main results: The results indicated that the texture variables obtained for the 15x15 of the Sentinel-2 image for AGC estimation, together with the MLR modeling technique, were the most successful technique compared to other images and ANN analysis (R2=0.86).
Research highlights: The results have shown that AGC can be predicted at high success levels with ANN modeling technique with remote sensing data sets.

Thanks

This study was produced from a doctoral thesis prepared by Hasan AKSOY and supervised by Prof. Dr. Alkan GÜNLÜ for the Institute of Natural and Applied Science, Çankırı Karatekin University, Türkiye.

References

  • Abdullah, M. M., Al-Ali, Z. M. & Srinivasan, S. (2021). The use of UAV-based remote sensing to estimate biomass and carbon stock for native desert shrubs. MethodsX, 8, 101399. https://doi.org/10.1016/j.mex.2021.101399
  • Aertsen, W., Kint, V., van Orshoven, J., Özkan, K. & Muys, B. (2010). Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 221(8),1119-1130. https://doi.org/10.1016/j.ecolmodel.2010.01.007
  • Akıllı, A. & Hülya, A. (2020). Evaluation of normalization techniques on neural networks for the prediction of 305-day milk yield. Turkish Journal of Agricultural Engineering Research, 1(2), 354-367. https://doi.org/ 10.46592/turkager.2020.v01i02.011
  • Aksoy, H. (2022). Sinop Orman Bölge Müdürlüğü Saf Sarıçam Meşcerelerinde Farklı Uzaktan Algılama Verileri Kullanılarak Bazı Meşcere Parametrelerinin Modellenmesi (Doctoral dissertation, Doktora Tezi, Çankırı Karatekin Üniversitesi, Çankırı).
  • Aksoy, H. (2024). Estimation Stand Volume, Basal Area and Quadratic Mean Diameter Using Landsat 8 OLI and Sentinel‐2 Satellite Image With Different Machine Learning Techniques. Transactions in GIS. https://doi.org/10.1111/tgis.13265
  • Aksoy, H., & Günlü, A. (2025). UAV and satellite-based prediction of aboveground biomass in scots pine stands: a comparative analysis of regression and neural network approaches. Earth Science Informatics, 18(1), 66. https://doi.org/10.1007/s12145-024-01657-0
  • Aksoy, H. (2024). Evaluation of forest areas and land use/cover (LULC) changes with a combination of remote sensing, intensity analysis and CA-Markov modelling. New Zealand Journal of Forestry Science, 54. https://doi.org/10.33494/nzjfs542024x328x
  • Alquraish, M. M. & Khadr, M. (2021). Remote-sensing-based streamflow forecasting using artificial neural network and support vector machine models. Remote Sensing, 13(20), 4147. https://doi.org/10.3390/rs13204147
  • Baloloy, A. B., Blanco, A. C., Candido, C.G., Argamosa, R. J. L., Dumalag, J. B .L. C., et al. (2018). Estimation of mangrove forest aboveground biomass using multispectral bands, vegetation indices and biophysical variables derived from optical satellite imageries: Rapideye, planetscope and sentinel-2. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 29-36. https:// doi.org/10.5194/isprs-annals-IV-3-29-2018
  • Basyuni, M., Wirasatriya, A., Iryanthony, S.B., Amelia, R., Slamet, B., et al. (2023). Aboveground biomass and carbon stock estimation using UAV photogrammetry in Indonesian mangroves and other competing land uses. Ecological Informatics, 77, 102227. https://doi.org/10. 1016/j.ecoinf.2023.102227
  • Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., ... & Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39, 79-87. https://doi.org/10.1016/j.jag.2015.02.012
  • Bi, H., Murphy, S., Volkova, L., Weston, C., Fairman, T., et al. (2015). Additive biomass equations based on complete weighing of sample trees for open eucalypt forest species in south-eastern Australia. Forest Ecology and Management, 349, 106-121. https://doi.org/10.1016/j.foreco.2015.03.007
  • Blackburn, G. A. (1998). Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. International Journal of remote sensing, 19(4), 657-675. https://doi.org/10.1080/014311698215919
  • Bolat, F. (2021). Ankara Orman Bölge Müdürlüğü Anadolu Karaçamı meşcerelerinde artım ve büyümenin yapay sinir ağları ile modellenmesi. Doktora Tezi, Çankırı Karatekin Üniversitesi, Çankırı.
  • Bulut, S. (2023). Machine learning prediction of above-ground biomass in pure Calabrian pine (Pinus brutia Ten.) stands of the Mediterranean region, Türkiye. Ecological Informatics, 74, 101951. https://doi.org/10.1016/j.ecoinf.2022. 101951
  • Bulut, S., Günlü, A., Aksoy, H., Bolat, F. & Sönmez, M. Y. (2024). Integration of field measurements with unmanned aerial vehicle to predict forest inventory metrics at tree and stand scales in natural pure Crimean pine forests. International Journal of Remote Sensing, 45(12), 3872-3896. https://doi.org/10.1080/01431161.2024.2357837
  • Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229-242. https://doi.org/10.1080/07038992.1996.10855178
  • Cheng, W. X., Yang, C. J., Zhou, W. C. & Liu, Y. C. (2009). Research summary of forest volume quantitative estimation based on remote sensing technology. J. Anhui Sci, 37, 7746-7750.
  • Chrysafis, I., Mallinis, G., Tsakiri, M. & Patias, P. (2019). Evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 imagery to assess growing stock volume of a Mediterranean forest. International Journal of Applied Earth Observation and Geoinformation, 77, 1-14. https://doi.org/10. 1016/j.jag.2018.12.004
  • Dong, L., Tang, S., Min, M., Veroustraete, F. & Cheng, J. (2019). Aboveground forest biomass based on OLSR and an ANN model integrating LiDAR and optical data in a mountainous region of China. International Journal of Remote Sensing, 40(15), 6059-6083. https://doi.org/10.1080/01431161.2019.1587201
  • Du, M., & Noguchi, N. (2017). Monitoring of wheat growth status and mapping of wheat yield’s within-field spatial variations using color images acquired from UAV-camera system. Remote sensing, 9(3), 289. https://doi.org/10.3390/rs9030289
  • Ehlers, D., Wang, C., Coulston, J., Zhang, Y., Pavelsky, T., et al. (2022). Mapping forest aboveground biomass using multisource remotely sensed data. Remote Sensing, 14(5), 1115. https://doi.org/ 10.3390/rs14051115
  • Ercanlı, İ., Kurt, A., Şenyurt, M., Günlü, A., Bolat, F, et al. (2018). Tarsus Yöresi Anadolu Karaçamı Ağaçlarında Hacim Tahminlerinin Yapay Sinir Ağları ile Elde Edilmesi. Anadolu Orman Araştırmaları Dergisi, 4(1), 25-37.
  • Fernandes, M.R., Aguiar, F.C., Martins, M.J., Rico, N., Ferreira, M.T, et al. (2020). Carbon stock estimations in a mediterranean riparian forest: A case study combining field data and UAV imagery. Forests, 11(4), 376. https://doi.org/10.3390 /f11040376
  • Foresee, F. D. & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian learning. In Proceedings of international conference on neural networks (ICNN'97) (Vol. 3, pp. 1930-1935). IEEE. https://doi.org/10.1109/ICNN. 1997.614194
  • Fremout, T., Cobián-De Vinatea, J., Thomas, E., Huaman-Zambrano, W., Salazar-Villegas, M., et al. (2022). Site-specific scaling of remote sensing-based estimates of woody cover and aboveground biomass for mapping long-term tropical dry forest degradation status. Remote Sensing of Environment, 276, 113040. https://doi.org/10.1016/j.rse.2022.113040
  • Fu, Y. (2018). Aboveground biomass estimation and uncertainties assessing on regional scale with an improved model analysis method. Hubei For. Sci. Technol, 47, 1-4. Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143(1):105–117
  • García-Fernández, M., Sanz-Ablanedo, E., & Rodríguez-Pérez, J. R. (2021). High-resolution drone-acquired RGB imagery to estimate spatial grape quality variability. Agronomy, 11(4),655.https://doi.org/10.3390/agronomy11040655
  • GDF, (2022). Sinop Regional Directorate of Forestry, Forest Planing Units, Forest Management Plans. Republic of Turkey, General Directorate of Forestry, Forest Administration and Planning Department, Ankara.
  • Georgopoulos, N., Sotiropoulos, C., Stefanidou, A. & Gitas, I. Z. (2022). Total Stem Biomass Estimation Using Sentinel-1 and-2 Data in a Dense Coniferous Forest of Complex Structure and Terrain. Forests, 13(12), 2157. https://doi. org/10.3390/f13122157
  • Gitelson AA, Kaufman YJ, Stark R, Rundquist D (2002) Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ 80(1):76–87. https://doi.org/10.1016/S0034-4257(01)00289-9
  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7
  • Goel, N. S., & Qin, W. (1994). Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation. Remote Sensing Reviews,10(4),309347. https://doi.org/10.1080/02757259409532252
  • Guisan, A., Edwards Jr, T. C. & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157(2-3), 89-100. https://doi.org/10.1016/S0304-3800(02)00204-1
  • Günlü, A. & Ercanlı, İ. (2020). Artificial neural network models by ALOS PALSAR data for aboveground stand carbon predictions of pure beech stands: a case study from northern of Turkey. Geocarto International, 35(1), 17-28. https://doi.org/10.1080/10106049.2018.1499817
  • Günlü, A., Ercanli, I., Başkent, E. Z. & Çakır, G. (2014). Estimating aboveground biomass using Landsat TM imagery: A case study of Anatolian Crimean pine forests in Turkey. Annals of Forest Research, 57(2), 289-298. https://doi.org/10.15287/afr.2014.278
  • Günlü, A., Ercanlı, İ., Şenyurt, M. & Keleş, S. (2021). Estimation of some stand parameters from textural features from WorldView-2 satellite image using the artificial neural network and multiple regression methods: a case study from Türkiye. Geocarto International, 36(8), 918-935. https://doi.org/ 10.1080/10106049.2019.1629644
  • Hague, T., Tillett, N. D., & Wheeler, H. (2006). Automated crop and weed monitoring in widely spaced cereals. Precision Agriculture, 7, 21-32. https://doi.org/10.1007/s11119-005-6787-1
  • Hamidi, S. K., Weiskittel, A., Bayat, M. & Fallah, A. (2021). Development of individual tree growth and yield model across multiple contrasting species using nonparametric and parametric methods in the Hyrcanian forests of northern Iran. European Journal of Forest Research, 140(2), 421-434. https://doi.org/10.1007/s10342-020-01340-1
  • Han, H., Wan, R. & Li, B. (2021). Estimating forest aboveground biomass using Gaofen-1 images, Sentinel-1 images, and machine learning algorithms: A case study of the Dabie Mountain Region, China. Remote Sensing, 14(1), 176. https://doi.org/10.3390/rs14010176
  • Huang, H., Liu, C., Wang, X., Zhou, X. & Gong, P. (2019). Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sensing of Environment, 221, 225-234. https://doi.org/10.1016/j.rse.2018.11. 017
  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309. https://doi.org/10.1016/0034-4257(88)90106-X
  • Hunt ER Jr, Doraiswamy PC, McMurtrey JE, Daughtry CS, Perry EM, Akhmedov B (2013) A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int J Appl Earth Obs Geoinf 21:103–112. https://doi.org/10.1016/j.jag.2012.07.020
  • Hunt ER Jr, Rock BN (1989) Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens Environ 30(1):43–54. https://doi.org/10.1016/0034-4257(89)90046-1
  • Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote sensing of Environment, 112(10), 3833-3845. https://doi.org/10.1016/j.rse.2008.06.006
  • Jucker, T., Caspersen, J., Chave, J., Antin, C., Barbier, N., et al. (2017). Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 23(1), 177-190. https://doi.org/10.1111/gcb.13388
  • Keleş, S., Günlü, A. & Ercanli, İ. (2021). Estimating aboveground stand carbon by combining Sentinel-1 and Sentinel-2 satellite data: a case study from Turkey. In Forest Resources Resilience and Conflicts (pp. 117-126). Elsevier. https://doi.org/10.1016/B978-0-12-822931-6.00008-3
  • Key CH, Benson NC (2006) Landscape assessment (LA). FIREMON: Fire effects monitoring and inventory system, 164, LA-1
  • Lan, Y. B., Zhu, Z. H., Deng, X. L., Lian, B. Z., Huang, J. Y., et al (2019). Monitoring and classification of citrus Huanglongbing based on UAV hyperspectral remote sensing. Transactions of the CSAE, 35(3), 92-100.
  • Lawrence, S., Giles, C. L. & Tsoi, A. C. (1997). Lessons in neural network training: Overfitting may be harder than expected. In Aaai/iaai (pp. 540-545).
  • Li, C., Li, M., Li, Y. & Qian, P. (2020a). Estimating aboveground forest carbon density using Landsat 8 and field-based data: A comparison of modelling approaches. International Journal of Remote Sensing, 41(11), 4269-4292. https://doi.org/10.1080/01431161.2020.1714782
  • Li, Y., Li, M., Li, C. & Liu, Z. (2020b). Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Scientific reports, 10(1), 9952. https://doi.org/10.1038/s41598-020-67024-3
  • Lin, J., Chen, D., Wu, W. & Liao, X. (2022). Estimating aboveground biomass of urban forest trees with dual-source UAV acquired point clouds. Urban Forestry & Urban Greening, 69, 127521. https://doi.org/ 10.1016/j.ufug.2022.127521
  • Listopad, C. M., Drake, J. B., Masters, R. E. & Weishampel, J. F. (2011). Portable and airborne small footprint LiDAR: Forest canopy structure estimation of fire managed plots. Remote Sensing, 3(7), 1284-1307. https://doi.org/10.3390/rs3071284
  • Liu HQ, Huete A (1995) A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans Geosci Remote Sens 33(2):457–465
  • Liu, N., Sun, P., Caldwell, P. V., Harper, R., Liu, S., et al. (2020). Trade-off between watershed water yield and ecosystem productivity along elevation gradients on a complex terrain in southwestern China. Journal of Hydrology, 590, 125449. https://doi.org/ 10.1016/j.jhydrol.2020.125449
  • Liu, Y., Feng, H., Yue, J., Fan, Y., Jin, X., et al. (2022). Estimation of Potato Above-Ground Biomass Based on Vegetation Indices and Green-Edge Parameters Obtained from UAVs. Remote Sensing, 14(21), 5323. https://doi.org/10.3390/rs14215323
  • Louhaichi M, Borman MM, Johnson DE (2001) Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int 16(1):65–70. https://doi.org/10.1080/10106040108542184
  • Lu, D., Chen, Q., Wang, G., Moran, E., Batistella, M., et al. (2012). Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates. International Journal of Forestry Research, 2012. https://doi.org/10.1155/2012/436537
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432. https://doi.org/10.1080/01431169608948714
  • Mu, B., Zhao, X., Zhao, J., Liu, N., Si, L., et al. (2022). Quantitatively Assessing the Impact of Driving Factors on Vegetation Cover Change in China’s 32 Major Cities. Remote Sensing, 14(4), 839. https://doi.org/10.3390/rs14040839
  • Muhsoni, F. F., Abida, I. W., Rini, D. A. S. & Putera, A. J. (2021). Estimation of mangrove carbon using drone images. Depik, 10(1), 41-46. https://doi.org/10.13170/depik.10.1.19313
  • Ogana, F. N. & Ercanli, I. (2022). Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm. Journal of Forestry Research, 33(3), 883-898. https://doi.org/10.1007/s11676-021-01373-1
  • Okut, H. (2016). Bayesian regularized neural networks for small n big p data. Artificial Neural Networks-Models and applications, 28. https://dx. doi.org/10.5772/63256
  • Ou, G., Li, C., Lv, Y., Wei, A., Xiong, H., et al. (2019). Improving aboveground biomass estimation of Pinus densata forests in Yunnan using Landsat 8 imagery by incorporating age dummy variable and method comparison. Remote Sensing, 11(7), 738. https://doi.org/10.3390/rs11070738
  • Poorazimy, M., Shataee, S., McRoberts, R. E. & Mohammadi, J. (2020). Integrating airborne laser scanning data, space-borne radar data and digital aerial imagery to estimate aboveground carbon stock in Hyrcanian forests, Iran. Remote Sensing of Environment, 240, 111669. https://doi.org/10.1016/j.rse.2020.111669
  • Poudel, K. P. & Cao, Q. V. (2013). Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. Forest Science, 59(2), 243-252. https://doi.org/ 10.5849/forsci.12-001
  • Qin, H., Zhou, W., Yao, Y. & Wang, W. (2021). Estimating aboveground carbon stock at the scale of individual trees in subtropical forests using UAV LiDAR and hyperspectral data. Remote Sensing, 13(24), 4969. https://doi.org/ 10.3390/rs13244969
  • Romanov, A. A., Tamarovskaya, A. N., Gloor, E., Brienen, R., Gusev, B. A., et al. (2022). Reassessment of carbon emissions from fires and a new estimate of net carbon uptake in Russian forests in 2001–2021. Science of The Total Environment, 846, 157322. https://doi.org/10.1016/ j.scitotenv.2022.157322
  • Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec Publ 351(1):309
  • Sakici, O. E., & Günlü, A. (2018). Artificial intelligence applications for predicting some stand attributes using Landsat 8 OLI satellite data: A case study from Turkey. https://aperta.ulakbim.gov.tr/record/34107/files/10-15666-aeer-1604
  • Sakici, O. E., & Ozdemir, G. (2018). Stem taper estimations with artificial neural networks for mixed Oriental beech and Kazdaği fir stands in Karabük region, Turkey. Cerne, 24(4), 439-451.
  • Seki, M. & Atar, D. (2021). Temporal and spatial change of carbon storage in Alara Forest Planning Unit. Kastamonu University Journal of Forestry Faculty, 21(3), 208-217. https://doi.org/10.17475/kastorman.1048387
  • Seki, M. (2023). Predicting stem taper using artificial neural network and regression models for Scots pine (Pinus sylvestris L.) in northwestern Türkiye. Scandinavian Journal of Forest Research, 38(1-2), 97-104. https://doi.org/10.1080/02827581.2023.2189297
  • Silva, C. A., Saatchi, S., Garcia, M., Labriere, N., Klauberg, C., et al. (2018). Comparison of small-and large-footprint lidar characterization of tropical forest aboveground structure and biomass: a case study from Central Gabon. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10), 3512-3526. https://doi.org/10.1109/JSTARS .2018.2816962
  • Sivasankar, T., Lone, J. M., Sarma, K. K., Qadirº, A. & Raju, P. L. N. (2013). Estimation of above ground biomass using support vector. Vietnam Journal of Earth Sciences, 41(2), 95-104.
  • Skudnik, M. & Jevšenak, J. (2022). Artificial neural networks as an alternative method to nonlinear mixed-effects models for tree height predictions. Forest Ecology and Management, 507, 120017. https://doi.org/10.1016/ j.foreco.2022.120017
  • Strobl, R. O. & Forte, F. (2007). Artificial neural network exploration of the influential factors in drainage network derivation. Hydrological Processes: An International Journal, 21(22), 2965-2978. https://doi.org/10.1002/hyp.6506
  • Tang, J., Liu, Y., Li, L., Liu, Y., Wu, Y., et al. (2022). Enhancing Aboveground Biomass Estimation for Three Pinus Forests in Yunnan, SW China, Using Landsat 8. Remote Sensing, 14(18), 4589. https://doi.org/10.3390/ rs14184589
  • Themistocleous K (2019), June DEM modeling using RGB-based vegetation indices from UAV images. In Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019) (Vol. 11174, pp. 499–506). SPIE. https://doi.org/10.1117/12.2532748
  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
  • Turgut, R. & Günlü, A. (2022). Estimating aboveground biomass using Landsat 8 OLI satellite image in pure Crimean pine (Pinus nigra JF Arnold subsp. pallasiana (Lamb.) Holmboe) stands: a case from Turkey. Geocarto International, 37(3), 720-734. https://doi.org/10.1080/10106049.2020.1737971
  • Udali, A., Lingua, E. & Persson, H.J. (2021). Assessing forest type and tree species classification using Sentinel-1 C-band SAR data in Southern Sweden. Remote Sensing, 13(16), 3237. https://doi.org/10.3390/rs131 63237
  • Van Havre, Z., White, N., Rousseau, J. & Mengersen, K. (2015). Overfitting Bayesian mixture models with an unknown number of components. PloS one, 10(7), e0131739. https://doi.org/10.1371/journal.pone.0131739
  • Wang, S., Wang, D. & Sun, J. R. (2022). Artificial neural network-based ionospheric delay correction method for satellite-based augmentation systems. Remote Sensing, 14:676.
  • Wang, X., Shao, G., Chen, H., Lewis, B. J., Qi, G., et al. (2013). An application of remote sensing data in mapping landscape-level forest biomass for monitoring the effectiveness of forest policies in northeastern China. Environmental Management, 52, 612-620. https://doi.org/10.1007/s00267-013-00 89-6
  • Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Shape features for identifying young weeds using image analysis. Transactions of the ASAE, 38(1), 271-281.
  • Wu, M., Dong, G., Wang, Y., Xiong, R., Li, Y., et al. (2020). Estimation of forest aboveground carbon storage in Sichuan Miyaluo Nature Reserve based on remote sensing. Acta Ecol. Sin, 40(2), 621-628.
  • Xu, C., Wang, B. & Chen, J. (2022). Forest carbon sink in China: Linked drivers and long short-term memory network-based prediction. Journal of Cleaner Production, 359, 132085. https://doi.org/10.1016/j.jclepro.2022.132085
  • Yavaşlı, D.D., & Ölgen, M.K. (2017). modeling above ground biomass in calabrian pine forests of düzlerçami (ANTALYA). Ege Coğrafya Dergisi, 26(2), 151-161.
  • Yavuz, H., Mısır, N., Tüfekçioğlu, A., Altun, L., Mısır, M., et al. (2010). Karadeniz Bölgesi saf ve karışık Sarıçam (Pinus slyvestris L.) meşcereleri için mekanistik büyüme modellerinin geliştirilmesi, biyokütle ve karbon depolama miktarlarının belirlenmesi. (TÜBİTAK-TOVAG Projesi, Proje No: 106O274), Karadeniz Teknik Üniversitesi Orman Fakültesi, Trabzon.
  • Ye, N., van Leeuwen, L. & Nyktas, P. (2019). Analysing the potential of UAV point cloud as input in quantitative structure modelling for assessment of woody biomass of single trees. International Journal of Applied Earth Observation and Geoinformation, 81, 47-57. https://doi.org/10.1016/j.jag.2019.05.010
  • Zaninovich, S. C. & Gatti, M. G. (2020). Carbon stock densities of semi-deciduous Atlantic forest and pine plantations in Argentina. Science of the Total Environment, 747, 141085. https://doi.org/10.1016/j.scitotenv. 2020.141085
  • Zarco-Tejada, P. J., Berjón, A., López-Lozano, R., Miller, J. R., Martín, P., Cachorro, V., ... & De Frutos, A. (2005). Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, 99(3), 271-287. https://doi.org/10.1016/j.rse.2005.09.002
  • Zhang, F., Tian, X., Zhang, H. & Jiang, M. (2022). Estimation of aboveground carbon density of forests using deep learning and multisource remote sensing. Remote Sensing, 14(13), 3022. https://doi.org/10.3390/rs14133022
  • Zhang, W., Zhao, L., Li, Y., Shi, J., Yan, M., et al. (2022). Forest Above-Ground Biomass Inversion Using Optical and SAR Images Based on a Multi-Step Feature Optimized Inversion Model. Remote Sensing, 14(7), 1608. https://doi.org/10.3390/rs14071608
  • Zhang, X., Jia, W., Sun, Y., Wang, F. & Miu, Y. (2023). Simulation of Spatial and Temporal Distribution of Forest Carbon Stocks in Long Time Series—Based on Remote Sensing and Deep Learning. Forests, 14(3), 483. https://doi.org/10.3390/f14030483
  • Zheng, D., Rademacher, J., Chen, J., Crow, T., Bresee, M., et al. (2004). Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment, 93(3), 402-411. https://doi.org/10.1016/j.rse.2004.08.008

Farklı Uzaktan Algılama Verileri ve Modelleme Teknikleri Kullanılarak Topraküstü Karbonun Tahmin Edilmesi

Year 2025, Volume: 25 Issue: 2, 152 - 176, 30.09.2025
https://doi.org/10.17475/kastorman.1787120

Abstract

Çalışmanın amacı: Ormanlar, karbonun depolanması, enerji ve su döngülerinin düzenlenmesi gibi süreçlerde küresel iklimde önemli bir rol oynamaktadır. Bu çalışmada Sinop Orman Bölge Müdürlüğü sınırlarında yayılış gösteren saf sarıçam meşcerelerinde Sentinel-1 (S1), Sentinel-2 (S2), Landsat 8 OLI (L8) ve İnsansız Hava Aracı (İHA) gibi farklı uzaktan algılama görüntülerinden elde edilen veriler ile topraküstü karbon (TÜK) arasındaki ilişkiler çoğul doğrusal regresyon (ÇDR) ve yapay sinir ağı (YSA) teknikleri ile modellenmesi amaçlanmıştır.
Çalışma alanı: Çalışma, Sinop Orman Bölge Müdürlüğü'nde bulunan saf sarıçam meşcerelerinde gerçekleştirilmiştir.
Materyal ve yöntem: Çalışma kapsamında toplam 184 adet örnek alan alınmış ve bu örnek alanlarda yersel ölçümler yapılmıştır. Alınan örnek alanların %80'i (150 adet) modellerin oluşturulmasında, %20'si (34 adet) ise modellerin test edilmesinde kullanılmıştır. Her bir örnek alanın TÜK değerleri allometrik denklem ile tahmin edilmiştir. Çalışmada uzaktan algılama verisi olarak, S1 görüntüsünden geri saçılma ve bant parlaklık değerleri, S2 ve L8 uydu görüntüleri için farklı pencere boyutlarına (3x3, 5x5, 7x7 ve 11x11) ve farklı yönelimlere (0°, 45°, 90° ve 135°) göre yansıma değerleri, vejetasyon indeksleri ve doku özellikleri ile İHA görüntülerinden elde edilen dijital bant, bant reflektans ve vejetasyon indisleri kullanılmıştır. Yersel ölçümler ve uzaktan algılama verileri arasındaki ilişkiler ÇDR ve YSA teknikleri ile modellenmiştir.
Temel sonuçlar: Sonuçlar, TÜK tahmininde S2 görüntüsünün 15x15 pencere boyutu için elde edilen doku değişkenleri ÇDR modelleme tekniği ile birlikte diğer görüntülere ve YSA analizine kıyasla en başarılı teknik olduğunu göstermiştir (R2=0.86).
Araştırma vurguları: Sonuçlar, TÜK’ün uzaktan algılama veri setleri ile ÇDR modelleme tekniği ile yüksek başarı düzeylerinde tahmin edilebileceğini göstermiştir.

References

  • Abdullah, M. M., Al-Ali, Z. M. & Srinivasan, S. (2021). The use of UAV-based remote sensing to estimate biomass and carbon stock for native desert shrubs. MethodsX, 8, 101399. https://doi.org/10.1016/j.mex.2021.101399
  • Aertsen, W., Kint, V., van Orshoven, J., Özkan, K. & Muys, B. (2010). Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 221(8),1119-1130. https://doi.org/10.1016/j.ecolmodel.2010.01.007
  • Akıllı, A. & Hülya, A. (2020). Evaluation of normalization techniques on neural networks for the prediction of 305-day milk yield. Turkish Journal of Agricultural Engineering Research, 1(2), 354-367. https://doi.org/ 10.46592/turkager.2020.v01i02.011
  • Aksoy, H. (2022). Sinop Orman Bölge Müdürlüğü Saf Sarıçam Meşcerelerinde Farklı Uzaktan Algılama Verileri Kullanılarak Bazı Meşcere Parametrelerinin Modellenmesi (Doctoral dissertation, Doktora Tezi, Çankırı Karatekin Üniversitesi, Çankırı).
  • Aksoy, H. (2024). Estimation Stand Volume, Basal Area and Quadratic Mean Diameter Using Landsat 8 OLI and Sentinel‐2 Satellite Image With Different Machine Learning Techniques. Transactions in GIS. https://doi.org/10.1111/tgis.13265
  • Aksoy, H., & Günlü, A. (2025). UAV and satellite-based prediction of aboveground biomass in scots pine stands: a comparative analysis of regression and neural network approaches. Earth Science Informatics, 18(1), 66. https://doi.org/10.1007/s12145-024-01657-0
  • Aksoy, H. (2024). Evaluation of forest areas and land use/cover (LULC) changes with a combination of remote sensing, intensity analysis and CA-Markov modelling. New Zealand Journal of Forestry Science, 54. https://doi.org/10.33494/nzjfs542024x328x
  • Alquraish, M. M. & Khadr, M. (2021). Remote-sensing-based streamflow forecasting using artificial neural network and support vector machine models. Remote Sensing, 13(20), 4147. https://doi.org/10.3390/rs13204147
  • Baloloy, A. B., Blanco, A. C., Candido, C.G., Argamosa, R. J. L., Dumalag, J. B .L. C., et al. (2018). Estimation of mangrove forest aboveground biomass using multispectral bands, vegetation indices and biophysical variables derived from optical satellite imageries: Rapideye, planetscope and sentinel-2. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 29-36. https:// doi.org/10.5194/isprs-annals-IV-3-29-2018
  • Basyuni, M., Wirasatriya, A., Iryanthony, S.B., Amelia, R., Slamet, B., et al. (2023). Aboveground biomass and carbon stock estimation using UAV photogrammetry in Indonesian mangroves and other competing land uses. Ecological Informatics, 77, 102227. https://doi.org/10. 1016/j.ecoinf.2023.102227
  • Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., ... & Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39, 79-87. https://doi.org/10.1016/j.jag.2015.02.012
  • Bi, H., Murphy, S., Volkova, L., Weston, C., Fairman, T., et al. (2015). Additive biomass equations based on complete weighing of sample trees for open eucalypt forest species in south-eastern Australia. Forest Ecology and Management, 349, 106-121. https://doi.org/10.1016/j.foreco.2015.03.007
  • Blackburn, G. A. (1998). Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. International Journal of remote sensing, 19(4), 657-675. https://doi.org/10.1080/014311698215919
  • Bolat, F. (2021). Ankara Orman Bölge Müdürlüğü Anadolu Karaçamı meşcerelerinde artım ve büyümenin yapay sinir ağları ile modellenmesi. Doktora Tezi, Çankırı Karatekin Üniversitesi, Çankırı.
  • Bulut, S. (2023). Machine learning prediction of above-ground biomass in pure Calabrian pine (Pinus brutia Ten.) stands of the Mediterranean region, Türkiye. Ecological Informatics, 74, 101951. https://doi.org/10.1016/j.ecoinf.2022. 101951
  • Bulut, S., Günlü, A., Aksoy, H., Bolat, F. & Sönmez, M. Y. (2024). Integration of field measurements with unmanned aerial vehicle to predict forest inventory metrics at tree and stand scales in natural pure Crimean pine forests. International Journal of Remote Sensing, 45(12), 3872-3896. https://doi.org/10.1080/01431161.2024.2357837
  • Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229-242. https://doi.org/10.1080/07038992.1996.10855178
  • Cheng, W. X., Yang, C. J., Zhou, W. C. & Liu, Y. C. (2009). Research summary of forest volume quantitative estimation based on remote sensing technology. J. Anhui Sci, 37, 7746-7750.
  • Chrysafis, I., Mallinis, G., Tsakiri, M. & Patias, P. (2019). Evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 imagery to assess growing stock volume of a Mediterranean forest. International Journal of Applied Earth Observation and Geoinformation, 77, 1-14. https://doi.org/10. 1016/j.jag.2018.12.004
  • Dong, L., Tang, S., Min, M., Veroustraete, F. & Cheng, J. (2019). Aboveground forest biomass based on OLSR and an ANN model integrating LiDAR and optical data in a mountainous region of China. International Journal of Remote Sensing, 40(15), 6059-6083. https://doi.org/10.1080/01431161.2019.1587201
  • Du, M., & Noguchi, N. (2017). Monitoring of wheat growth status and mapping of wheat yield’s within-field spatial variations using color images acquired from UAV-camera system. Remote sensing, 9(3), 289. https://doi.org/10.3390/rs9030289
  • Ehlers, D., Wang, C., Coulston, J., Zhang, Y., Pavelsky, T., et al. (2022). Mapping forest aboveground biomass using multisource remotely sensed data. Remote Sensing, 14(5), 1115. https://doi.org/ 10.3390/rs14051115
  • Ercanlı, İ., Kurt, A., Şenyurt, M., Günlü, A., Bolat, F, et al. (2018). Tarsus Yöresi Anadolu Karaçamı Ağaçlarında Hacim Tahminlerinin Yapay Sinir Ağları ile Elde Edilmesi. Anadolu Orman Araştırmaları Dergisi, 4(1), 25-37.
  • Fernandes, M.R., Aguiar, F.C., Martins, M.J., Rico, N., Ferreira, M.T, et al. (2020). Carbon stock estimations in a mediterranean riparian forest: A case study combining field data and UAV imagery. Forests, 11(4), 376. https://doi.org/10.3390 /f11040376
  • Foresee, F. D. & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian learning. In Proceedings of international conference on neural networks (ICNN'97) (Vol. 3, pp. 1930-1935). IEEE. https://doi.org/10.1109/ICNN. 1997.614194
  • Fremout, T., Cobián-De Vinatea, J., Thomas, E., Huaman-Zambrano, W., Salazar-Villegas, M., et al. (2022). Site-specific scaling of remote sensing-based estimates of woody cover and aboveground biomass for mapping long-term tropical dry forest degradation status. Remote Sensing of Environment, 276, 113040. https://doi.org/10.1016/j.rse.2022.113040
  • Fu, Y. (2018). Aboveground biomass estimation and uncertainties assessing on regional scale with an improved model analysis method. Hubei For. Sci. Technol, 47, 1-4. Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143(1):105–117
  • García-Fernández, M., Sanz-Ablanedo, E., & Rodríguez-Pérez, J. R. (2021). High-resolution drone-acquired RGB imagery to estimate spatial grape quality variability. Agronomy, 11(4),655.https://doi.org/10.3390/agronomy11040655
  • GDF, (2022). Sinop Regional Directorate of Forestry, Forest Planing Units, Forest Management Plans. Republic of Turkey, General Directorate of Forestry, Forest Administration and Planning Department, Ankara.
  • Georgopoulos, N., Sotiropoulos, C., Stefanidou, A. & Gitas, I. Z. (2022). Total Stem Biomass Estimation Using Sentinel-1 and-2 Data in a Dense Coniferous Forest of Complex Structure and Terrain. Forests, 13(12), 2157. https://doi. org/10.3390/f13122157
  • Gitelson AA, Kaufman YJ, Stark R, Rundquist D (2002) Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ 80(1):76–87. https://doi.org/10.1016/S0034-4257(01)00289-9
  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7
  • Goel, N. S., & Qin, W. (1994). Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation. Remote Sensing Reviews,10(4),309347. https://doi.org/10.1080/02757259409532252
  • Guisan, A., Edwards Jr, T. C. & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157(2-3), 89-100. https://doi.org/10.1016/S0304-3800(02)00204-1
  • Günlü, A. & Ercanlı, İ. (2020). Artificial neural network models by ALOS PALSAR data for aboveground stand carbon predictions of pure beech stands: a case study from northern of Turkey. Geocarto International, 35(1), 17-28. https://doi.org/10.1080/10106049.2018.1499817
  • Günlü, A., Ercanli, I., Başkent, E. Z. & Çakır, G. (2014). Estimating aboveground biomass using Landsat TM imagery: A case study of Anatolian Crimean pine forests in Turkey. Annals of Forest Research, 57(2), 289-298. https://doi.org/10.15287/afr.2014.278
  • Günlü, A., Ercanlı, İ., Şenyurt, M. & Keleş, S. (2021). Estimation of some stand parameters from textural features from WorldView-2 satellite image using the artificial neural network and multiple regression methods: a case study from Türkiye. Geocarto International, 36(8), 918-935. https://doi.org/ 10.1080/10106049.2019.1629644
  • Hague, T., Tillett, N. D., & Wheeler, H. (2006). Automated crop and weed monitoring in widely spaced cereals. Precision Agriculture, 7, 21-32. https://doi.org/10.1007/s11119-005-6787-1
  • Hamidi, S. K., Weiskittel, A., Bayat, M. & Fallah, A. (2021). Development of individual tree growth and yield model across multiple contrasting species using nonparametric and parametric methods in the Hyrcanian forests of northern Iran. European Journal of Forest Research, 140(2), 421-434. https://doi.org/10.1007/s10342-020-01340-1
  • Han, H., Wan, R. & Li, B. (2021). Estimating forest aboveground biomass using Gaofen-1 images, Sentinel-1 images, and machine learning algorithms: A case study of the Dabie Mountain Region, China. Remote Sensing, 14(1), 176. https://doi.org/10.3390/rs14010176
  • Huang, H., Liu, C., Wang, X., Zhou, X. & Gong, P. (2019). Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sensing of Environment, 221, 225-234. https://doi.org/10.1016/j.rse.2018.11. 017
  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309. https://doi.org/10.1016/0034-4257(88)90106-X
  • Hunt ER Jr, Doraiswamy PC, McMurtrey JE, Daughtry CS, Perry EM, Akhmedov B (2013) A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int J Appl Earth Obs Geoinf 21:103–112. https://doi.org/10.1016/j.jag.2012.07.020
  • Hunt ER Jr, Rock BN (1989) Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens Environ 30(1):43–54. https://doi.org/10.1016/0034-4257(89)90046-1
  • Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote sensing of Environment, 112(10), 3833-3845. https://doi.org/10.1016/j.rse.2008.06.006
  • Jucker, T., Caspersen, J., Chave, J., Antin, C., Barbier, N., et al. (2017). Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 23(1), 177-190. https://doi.org/10.1111/gcb.13388
  • Keleş, S., Günlü, A. & Ercanli, İ. (2021). Estimating aboveground stand carbon by combining Sentinel-1 and Sentinel-2 satellite data: a case study from Turkey. In Forest Resources Resilience and Conflicts (pp. 117-126). Elsevier. https://doi.org/10.1016/B978-0-12-822931-6.00008-3
  • Key CH, Benson NC (2006) Landscape assessment (LA). FIREMON: Fire effects monitoring and inventory system, 164, LA-1
  • Lan, Y. B., Zhu, Z. H., Deng, X. L., Lian, B. Z., Huang, J. Y., et al (2019). Monitoring and classification of citrus Huanglongbing based on UAV hyperspectral remote sensing. Transactions of the CSAE, 35(3), 92-100.
  • Lawrence, S., Giles, C. L. & Tsoi, A. C. (1997). Lessons in neural network training: Overfitting may be harder than expected. In Aaai/iaai (pp. 540-545).
  • Li, C., Li, M., Li, Y. & Qian, P. (2020a). Estimating aboveground forest carbon density using Landsat 8 and field-based data: A comparison of modelling approaches. International Journal of Remote Sensing, 41(11), 4269-4292. https://doi.org/10.1080/01431161.2020.1714782
  • Li, Y., Li, M., Li, C. & Liu, Z. (2020b). Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Scientific reports, 10(1), 9952. https://doi.org/10.1038/s41598-020-67024-3
  • Lin, J., Chen, D., Wu, W. & Liao, X. (2022). Estimating aboveground biomass of urban forest trees with dual-source UAV acquired point clouds. Urban Forestry & Urban Greening, 69, 127521. https://doi.org/ 10.1016/j.ufug.2022.127521
  • Listopad, C. M., Drake, J. B., Masters, R. E. & Weishampel, J. F. (2011). Portable and airborne small footprint LiDAR: Forest canopy structure estimation of fire managed plots. Remote Sensing, 3(7), 1284-1307. https://doi.org/10.3390/rs3071284
  • Liu HQ, Huete A (1995) A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans Geosci Remote Sens 33(2):457–465
  • Liu, N., Sun, P., Caldwell, P. V., Harper, R., Liu, S., et al. (2020). Trade-off between watershed water yield and ecosystem productivity along elevation gradients on a complex terrain in southwestern China. Journal of Hydrology, 590, 125449. https://doi.org/ 10.1016/j.jhydrol.2020.125449
  • Liu, Y., Feng, H., Yue, J., Fan, Y., Jin, X., et al. (2022). Estimation of Potato Above-Ground Biomass Based on Vegetation Indices and Green-Edge Parameters Obtained from UAVs. Remote Sensing, 14(21), 5323. https://doi.org/10.3390/rs14215323
  • Louhaichi M, Borman MM, Johnson DE (2001) Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int 16(1):65–70. https://doi.org/10.1080/10106040108542184
  • Lu, D., Chen, Q., Wang, G., Moran, E., Batistella, M., et al. (2012). Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates. International Journal of Forestry Research, 2012. https://doi.org/10.1155/2012/436537
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432. https://doi.org/10.1080/01431169608948714
  • Mu, B., Zhao, X., Zhao, J., Liu, N., Si, L., et al. (2022). Quantitatively Assessing the Impact of Driving Factors on Vegetation Cover Change in China’s 32 Major Cities. Remote Sensing, 14(4), 839. https://doi.org/10.3390/rs14040839
  • Muhsoni, F. F., Abida, I. W., Rini, D. A. S. & Putera, A. J. (2021). Estimation of mangrove carbon using drone images. Depik, 10(1), 41-46. https://doi.org/10.13170/depik.10.1.19313
  • Ogana, F. N. & Ercanli, I. (2022). Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm. Journal of Forestry Research, 33(3), 883-898. https://doi.org/10.1007/s11676-021-01373-1
  • Okut, H. (2016). Bayesian regularized neural networks for small n big p data. Artificial Neural Networks-Models and applications, 28. https://dx. doi.org/10.5772/63256
  • Ou, G., Li, C., Lv, Y., Wei, A., Xiong, H., et al. (2019). Improving aboveground biomass estimation of Pinus densata forests in Yunnan using Landsat 8 imagery by incorporating age dummy variable and method comparison. Remote Sensing, 11(7), 738. https://doi.org/10.3390/rs11070738
  • Poorazimy, M., Shataee, S., McRoberts, R. E. & Mohammadi, J. (2020). Integrating airborne laser scanning data, space-borne radar data and digital aerial imagery to estimate aboveground carbon stock in Hyrcanian forests, Iran. Remote Sensing of Environment, 240, 111669. https://doi.org/10.1016/j.rse.2020.111669
  • Poudel, K. P. & Cao, Q. V. (2013). Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. Forest Science, 59(2), 243-252. https://doi.org/ 10.5849/forsci.12-001
  • Qin, H., Zhou, W., Yao, Y. & Wang, W. (2021). Estimating aboveground carbon stock at the scale of individual trees in subtropical forests using UAV LiDAR and hyperspectral data. Remote Sensing, 13(24), 4969. https://doi.org/ 10.3390/rs13244969
  • Romanov, A. A., Tamarovskaya, A. N., Gloor, E., Brienen, R., Gusev, B. A., et al. (2022). Reassessment of carbon emissions from fires and a new estimate of net carbon uptake in Russian forests in 2001–2021. Science of The Total Environment, 846, 157322. https://doi.org/10.1016/ j.scitotenv.2022.157322
  • Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec Publ 351(1):309
  • Sakici, O. E., & Günlü, A. (2018). Artificial intelligence applications for predicting some stand attributes using Landsat 8 OLI satellite data: A case study from Turkey. https://aperta.ulakbim.gov.tr/record/34107/files/10-15666-aeer-1604
  • Sakici, O. E., & Ozdemir, G. (2018). Stem taper estimations with artificial neural networks for mixed Oriental beech and Kazdaği fir stands in Karabük region, Turkey. Cerne, 24(4), 439-451.
  • Seki, M. & Atar, D. (2021). Temporal and spatial change of carbon storage in Alara Forest Planning Unit. Kastamonu University Journal of Forestry Faculty, 21(3), 208-217. https://doi.org/10.17475/kastorman.1048387
  • Seki, M. (2023). Predicting stem taper using artificial neural network and regression models for Scots pine (Pinus sylvestris L.) in northwestern Türkiye. Scandinavian Journal of Forest Research, 38(1-2), 97-104. https://doi.org/10.1080/02827581.2023.2189297
  • Silva, C. A., Saatchi, S., Garcia, M., Labriere, N., Klauberg, C., et al. (2018). Comparison of small-and large-footprint lidar characterization of tropical forest aboveground structure and biomass: a case study from Central Gabon. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10), 3512-3526. https://doi.org/10.1109/JSTARS .2018.2816962
  • Sivasankar, T., Lone, J. M., Sarma, K. K., Qadirº, A. & Raju, P. L. N. (2013). Estimation of above ground biomass using support vector. Vietnam Journal of Earth Sciences, 41(2), 95-104.
  • Skudnik, M. & Jevšenak, J. (2022). Artificial neural networks as an alternative method to nonlinear mixed-effects models for tree height predictions. Forest Ecology and Management, 507, 120017. https://doi.org/10.1016/ j.foreco.2022.120017
  • Strobl, R. O. & Forte, F. (2007). Artificial neural network exploration of the influential factors in drainage network derivation. Hydrological Processes: An International Journal, 21(22), 2965-2978. https://doi.org/10.1002/hyp.6506
  • Tang, J., Liu, Y., Li, L., Liu, Y., Wu, Y., et al. (2022). Enhancing Aboveground Biomass Estimation for Three Pinus Forests in Yunnan, SW China, Using Landsat 8. Remote Sensing, 14(18), 4589. https://doi.org/10.3390/ rs14184589
  • Themistocleous K (2019), June DEM modeling using RGB-based vegetation indices from UAV images. In Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019) (Vol. 11174, pp. 499–506). SPIE. https://doi.org/10.1117/12.2532748
  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
  • Turgut, R. & Günlü, A. (2022). Estimating aboveground biomass using Landsat 8 OLI satellite image in pure Crimean pine (Pinus nigra JF Arnold subsp. pallasiana (Lamb.) Holmboe) stands: a case from Turkey. Geocarto International, 37(3), 720-734. https://doi.org/10.1080/10106049.2020.1737971
  • Udali, A., Lingua, E. & Persson, H.J. (2021). Assessing forest type and tree species classification using Sentinel-1 C-band SAR data in Southern Sweden. Remote Sensing, 13(16), 3237. https://doi.org/10.3390/rs131 63237
  • Van Havre, Z., White, N., Rousseau, J. & Mengersen, K. (2015). Overfitting Bayesian mixture models with an unknown number of components. PloS one, 10(7), e0131739. https://doi.org/10.1371/journal.pone.0131739
  • Wang, S., Wang, D. & Sun, J. R. (2022). Artificial neural network-based ionospheric delay correction method for satellite-based augmentation systems. Remote Sensing, 14:676.
  • Wang, X., Shao, G., Chen, H., Lewis, B. J., Qi, G., et al. (2013). An application of remote sensing data in mapping landscape-level forest biomass for monitoring the effectiveness of forest policies in northeastern China. Environmental Management, 52, 612-620. https://doi.org/10.1007/s00267-013-00 89-6
  • Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Shape features for identifying young weeds using image analysis. Transactions of the ASAE, 38(1), 271-281.
  • Wu, M., Dong, G., Wang, Y., Xiong, R., Li, Y., et al. (2020). Estimation of forest aboveground carbon storage in Sichuan Miyaluo Nature Reserve based on remote sensing. Acta Ecol. Sin, 40(2), 621-628.
  • Xu, C., Wang, B. & Chen, J. (2022). Forest carbon sink in China: Linked drivers and long short-term memory network-based prediction. Journal of Cleaner Production, 359, 132085. https://doi.org/10.1016/j.jclepro.2022.132085
  • Yavaşlı, D.D., & Ölgen, M.K. (2017). modeling above ground biomass in calabrian pine forests of düzlerçami (ANTALYA). Ege Coğrafya Dergisi, 26(2), 151-161.
  • Yavuz, H., Mısır, N., Tüfekçioğlu, A., Altun, L., Mısır, M., et al. (2010). Karadeniz Bölgesi saf ve karışık Sarıçam (Pinus slyvestris L.) meşcereleri için mekanistik büyüme modellerinin geliştirilmesi, biyokütle ve karbon depolama miktarlarının belirlenmesi. (TÜBİTAK-TOVAG Projesi, Proje No: 106O274), Karadeniz Teknik Üniversitesi Orman Fakültesi, Trabzon.
  • Ye, N., van Leeuwen, L. & Nyktas, P. (2019). Analysing the potential of UAV point cloud as input in quantitative structure modelling for assessment of woody biomass of single trees. International Journal of Applied Earth Observation and Geoinformation, 81, 47-57. https://doi.org/10.1016/j.jag.2019.05.010
  • Zaninovich, S. C. & Gatti, M. G. (2020). Carbon stock densities of semi-deciduous Atlantic forest and pine plantations in Argentina. Science of the Total Environment, 747, 141085. https://doi.org/10.1016/j.scitotenv. 2020.141085
  • Zarco-Tejada, P. J., Berjón, A., López-Lozano, R., Miller, J. R., Martín, P., Cachorro, V., ... & De Frutos, A. (2005). Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, 99(3), 271-287. https://doi.org/10.1016/j.rse.2005.09.002
  • Zhang, F., Tian, X., Zhang, H. & Jiang, M. (2022). Estimation of aboveground carbon density of forests using deep learning and multisource remote sensing. Remote Sensing, 14(13), 3022. https://doi.org/10.3390/rs14133022
  • Zhang, W., Zhao, L., Li, Y., Shi, J., Yan, M., et al. (2022). Forest Above-Ground Biomass Inversion Using Optical and SAR Images Based on a Multi-Step Feature Optimized Inversion Model. Remote Sensing, 14(7), 1608. https://doi.org/10.3390/rs14071608
  • Zhang, X., Jia, W., Sun, Y., Wang, F. & Miu, Y. (2023). Simulation of Spatial and Temporal Distribution of Forest Carbon Stocks in Long Time Series—Based on Remote Sensing and Deep Learning. Forests, 14(3), 483. https://doi.org/10.3390/f14030483
  • Zheng, D., Rademacher, J., Chen, J., Crow, T., Bresee, M., et al. (2004). Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment, 93(3), 402-411. https://doi.org/10.1016/j.rse.2004.08.008
There are 98 citations in total.

Details

Primary Language English
Subjects Forestry Sciences (Other)
Journal Section Articles
Authors

Hasan Aksoy

Alkan Günlü

Early Pub Date September 22, 2025
Publication Date September 30, 2025
Submission Date July 22, 2024
Acceptance Date December 26, 2024
Published in Issue Year 2025 Volume: 25 Issue: 2

Cite

APA Aksoy, H., & Günlü, A. (2025). Estimation of Aboveground Carbon Using Different Remote Sensing Data and Modelling Techniques. Kastamonu University Journal of Forestry Faculty, 25(2), 152-176. https://doi.org/10.17475/kastorman.1787120
AMA Aksoy H, Günlü A. Estimation of Aboveground Carbon Using Different Remote Sensing Data and Modelling Techniques. Kastamonu University Journal of Forestry Faculty. September 2025;25(2):152-176. doi:10.17475/kastorman.1787120
Chicago Aksoy, Hasan, and Alkan Günlü. “Estimation of Aboveground Carbon Using Different Remote Sensing Data and Modelling Techniques”. Kastamonu University Journal of Forestry Faculty 25, no. 2 (September 2025): 152-76. https://doi.org/10.17475/kastorman.1787120.
EndNote Aksoy H, Günlü A (September 1, 2025) Estimation of Aboveground Carbon Using Different Remote Sensing Data and Modelling Techniques. Kastamonu University Journal of Forestry Faculty 25 2 152–176.
IEEE H. Aksoy and A. Günlü, “Estimation of Aboveground Carbon Using Different Remote Sensing Data and Modelling Techniques”, Kastamonu University Journal of Forestry Faculty, vol. 25, no. 2, pp. 152–176, 2025, doi: 10.17475/kastorman.1787120.
ISNAD Aksoy, Hasan - Günlü, Alkan. “Estimation of Aboveground Carbon Using Different Remote Sensing Data and Modelling Techniques”. Kastamonu University Journal of Forestry Faculty 25/2 (September2025), 152-176. https://doi.org/10.17475/kastorman.1787120.
JAMA Aksoy H, Günlü A. Estimation of Aboveground Carbon Using Different Remote Sensing Data and Modelling Techniques. Kastamonu University Journal of Forestry Faculty. 2025;25:152–176.
MLA Aksoy, Hasan and Alkan Günlü. “Estimation of Aboveground Carbon Using Different Remote Sensing Data and Modelling Techniques”. Kastamonu University Journal of Forestry Faculty, vol. 25, no. 2, 2025, pp. 152-76, doi:10.17475/kastorman.1787120.
Vancouver Aksoy H, Günlü A. Estimation of Aboveground Carbon Using Different Remote Sensing Data and Modelling Techniques. Kastamonu University Journal of Forestry Faculty. 2025;25(2):152-76.

14178  14179       14165           14166           14167            14168