Research Article
BibTex RIS Cite

Determination of Some Technological Properties and Formaldehyde Gas Release in Lignocellulosic Based Interior Design Panels

Year 2025, Volume: 25 Issue: 2, 233 - 246, 30.09.2025
https://doi.org/10.17475/kastorman.1787616

Abstract

Aim of study: The aim is to produce lignocellulosic-based interior design panels (LIDP), a type of composite that complies with gas emission standards, from annual facility waste.
Material and method: The wood chips of Turkish pine and annual plant wastes cotton stalks, sunflower stalks and wheat stalks were used as test materials. Within the scope of the tests, the water uptake (WU) and thickness increase (TI) values were measured from physical properties and some technological properties (Janka hardness (JH), surface vertical screw holding strength (VSH), nail holding strenght (NHS) and surface soundness strength (SSS)) awere measured. Similarly, the FGR values of the LIDP were determined based on perforator method.
Main results: The measurement results of WU and TI in physical properties showed that the test panels did not meet the criteria required in the usage standards. In terms of technological features, as the annual waste plant ratio in the panel matrix increased, the power values also decreased. The best results in formaldehyde gas emissions evaluated according to EN 13986 were obtained in LIDP produced from WCR-SSR mixtures.
Research highlights: Investigation of the suitability of annual plant residues for the production of environmentally friendly lignocellulosic-based interior design panels (LIDP) with standard features.

Supporting Institution

the Scientific Research Projects Coordination Unit (BAP) of Kahramanmaraş Sütçü İmam University

Project Number

2018/2-39D

References

  • Abdolzadeh, H., Doosthoseini, K., Karimi, A.N., & Enayati, A.A. (2011). The effect of acetylated particle distribution and type of resin on physical and mechanical properties of poplar particleboard. European Journal of Wood and Wood Products, 69, 3–10. http://dx.doi.org/ 10.1007/s00107-009-0390-5.
  • Akbulut, T. (1991). Orus-Vezirköprü Yonga levha Fabrikasında Üretilen Levhaların Teknolojik Özellikleri. Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • ASTM-D 1761-88, (1995). Standard Test Methods for Mechanical Fasteners in Wood, ASTM.
  • Ashori, A. & Nourbakhsh, A. (2010). Reinforced polypropylene composites: effects of chemical compositions and particle size. Bioresource Technolgy, 101, 2515–9
  • Ashori, A. & Nourbakhsh, A. (2008). Effect of pres cycle time and resin contents on physical and mechanical properties of particleboard panels made from the under utilized low-quality raw materials. Industrial crops and products, 28(2), 225-30.
  • Ayrilmis, N., Buyuksari, U., Avci, E. & Koc, E. (2009). Utilization of pine (Pinus pinea L.) cone in manufacture of wood based composite. Forest Ecologyand Management, 259, 65-70.
  • Bardak, S., Sari, B., Nemli, G., Kırcı, H. & Baharoglu, M. (2011). The effect of decor paperproperties and adhesive type on some properties of particleboard. International Journal of Adhesion and Adhesives, 1, 412–5.
  • Bardak, S., Nemli, G. & Bardak, T. (2019). The quality comparison of particleboards produced from heartwood and sapwood of European larch, Moderas Ciencia y tecnologia. 21, 511-520.
  • Bektas, I., Güler, C., Kalaycioğlu, H., Mengeloğlu, F. & Nacar, M. (2005). The manufacture of particleboards using sunflower stalks (Helianthus annuus L.) and poplar wood (Populus alba L.), Jounrnal of Composite mateials. 39, 467-473.
  • Łebkowska, M., Radzıwıłł, M.Z., Tabernacka, A. (2017). Adhesives based on formaldehyde-environmental problems. Division of Biology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warszawa, Poland. Journal of Biotechnology, 63-65.
  • Bekalo, S.A. & Reinhardt, H.W. (2010). Fibers of coffee husk and hulls for the production of particleboard, Mater. Struct. 43, 1049-1060.
  • BS EN 13986 (2005). Wood-based panels for use in construction-characteristics, evaluation of conformity and marking. British Standards Institution (BSI).
  • Buyuksari, U. Ayrilmis, N. Avci, E. & Koc, E. (2010). Evaluation of the physical, mechanical properties and formaldehyde emission of particleboard manufactured from waste stone pine (Pinus pinea L.) cones, Bioresource technology, 101, 255-259.
  • Dunky, M. & Pizzi, A. (2002). Wood adhesives. In: Chaudhury M, Pocius AV, editors. Adhesivescience and engineering -2: surfaces, chemistry and applications. Amsterdam: Elsevier; p. 1039–103.
  • EN 312 (2005). Particleboards-specifications, European Committee for Standardization, Brussels–Belgium.
  • EN 320 (2011). Particleboards and fiberboards - determination of resistance to axial withdrawal of screws, European Committee for Standardization, Brussels–Belgium.
  • EN 311 (2005). Wood-based panels-Surface soundness-test method, European Committee for Standardization, Brussels–Belgium.
  • EN 120 (1996). Wood based panels, determination of formaldehyde content in fiberboard by using perforator method, European Committee for Standardization, Brussels–Belgium.
  • EN 317 (1993). Particleboards and Fiberboards, Determination of Swelling in Thickness After Immersion. European Committee for Standardization, Brussels–Belgium.
  • Ferraz, P.F.P., Mendes, R. F., Marin, D. B., Paes, J. L., Cecchin, D., Barbari, M. (2020). Agricultural residues of lignocellulosic materials in cement composites, Applied Science. 10, 2-18.
  • Fiorelli, J., Sartori, D. L., CravoI, J.C.M., Junior, H.S., Rossignolo, J.A., Nascimento, M.F. & Lahr, F.A.R. (2013). Sugarcane bagasse and castor oil polyurethane adhesive-based particulate composite, Materials Research. 16, 1516-1539.
  • Gatani, M.P., Fiorelli, J., Medina, J.C., Arguello, R., Ruiz, A., Nascimento, M.F. & Savastano, H. (2013). Technical production viability and properties of particleboard made with peanut husks, Revista Materia, 18, 1286-1293.
  • Gurjar, R.M. (1993). Effect of different binders on properties of particleboard from cotton seed hulls with emphasis on water repellency. Bioresource technology, 43, 177-188.
  • Guler, C. & Sancar, S. (2017). The principle of a particle board plant and the effect of pressing techniques on board quality, Forestry Journal, 12, 1-10.
  • Guler, C. (2015). In the production of wood-based composite materials, some evaluation of annual plants, Selcuk-Technical Journal, 14, 70-78 (In Turkish).
  • Guntekin, E. & Karakus, B. (2008). Feasibility of using eggplant stalks (Solanum melongena) in the production of experimental particleboard, Industrial Crops and Products, 27, 354-358.
  • Ghani, A., Ashari, Z., Bawon, P. & Lee, S. (2018). Reducing formaldehyde emission of urea formaldehyde-bonded particleboard by addition of amines as formaldehyde scavenger. Building and Environment, 142, 188-194. https ://doi. org/10.1016/j.build env.2018.06.020
  • Gu, J. Y. (2015). Present situation and development trend of wood adhesives in China. Adhesion, 36(02), 29-31 (in Chinese).
  • Guru, M., Atar, M. & Yıldırım, R. (2008). Production of polymer matrix composite particleboard from walnut shell and improvement of its requirements, Materials and Design, 29, 284-287.
  • Guru, M., Tekeli, S. & Bilici, I. (2006). Manufacturing of urea formaldehyde - based composite particleboard from almond shell, Materials and Design, 27, 1148-1151.
  • Gwon, J.G., Lee, S.Y., Chun. S.J., Doh, G.H. & Kim, J.H. (2010). Effects of chemical treatments of hybrid fillers on thephysical and thermal properties of wood plastic composites. Composites: Part A, 41, 1491-7.
  • Hamidreza, P., Khanjanzadeh, H. & Salari, A. (2013). Effect of using walnut/almond shells on the physical, mechanical properties and formaldehyde emission of particleboard, Compos. Part B, 45, 858-863.
  • Hashida, K., Ohara, S. & Makino, R. (2006). Improvement of formaldehyde scavenging ability of condensed tannins by ammonia treatment. Holzforschung, 60(20), 178-183. https ://doi.org/10.1515/HF.2006.029.
  • Kalaycıoglu, H. & Çolakoglu, G. (1994). Çeşitli Ağaç Türlerinden Üretilmiş Kontrplak ve Yonga Levhalardan, Üretim Şartlarına Bağlı Olarak Formaldehit Çıkışının Sınırlandırılması İmkanları, Proje No: TOAG-935, Trabzon.
  • Kalaycioglu, H. (1992). Utilization of crops residues on particleboard production, Proc. of ORENKO, First Forest Products Symp. KTU, Faculty of Forestry, Trabzon, Turkey. 288-292.
  • Kamdem, D.P. (2004). Properties of wood plastic composites made of recycled HDPE and wood flour from CCA-treated wood removed from service, Compos. A, 35, 347-355.
  • Kim, S. (2009). Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission, Bioresource technology, 100, 744-748.
  • Kim, S., Kim, J.A., Kim, H.J. & Kim, S.D. (2006). Determination of formaldehyde and TVOC emission factor from wood based composites by small chamber method. Polymer Testing, 25, 605-14
  • Kozlowski, R. & Piotrowski, R. (1987). Flax shaves saw dust production, Works of the National Natural Fibers Institute, 31, 132-142.
  • Kunaver, M., Medved, S., Cuk, N., Jasiukaitytė, E. & Poljanšek, I. (2010). T. Strnad, Application of liquefied wood as a new particle board adhesive system. Bioresource technology, 101, 1361-1368.
  • Lei, H., Du, G., Pizzi, A. & Celzard, A. (2008). Influence of nanoclay on urea formaldehyde resins for wood adhesive sandits model. Journal of applied polymer science, 109, 2442-51.
  • Liang, J., Wu, J. & Xu., J. (2021). Low-formaldehyde emission composite particleboard manufactured from waste chestnut bur, Journal of Wood Science, 67, 2-10.
  • Lin, R., Sun, J., Yue, C., Wang, X., Tu, D. & Gao, Z. (2014). Study on preparation and properties of phenol-formaldehyde-chinese fir liquefaction copolymer resin, Moderas Ciencia y tecnologia, 16, 159-174.
  • Martins, R. S. F., Gonçalves, F. G., Lelis, R. C. C., Segundinho, P. G. A., Nunes, A.M., Vidaurre, G.B., Chaves, I. L. S. & Santiago, S. B. (2020). Physical properties and formaldehyde emission in particleboards of Eucalyptus sp. and lignocellulosic agro-industrial waste, Scientia Forestalis, 48, 1-13.
  • Murata, K., Watanabe, Y. & Nakano, T. (2013). Effect of thermal treatment of veneer on formaldehyde emission of poplar plywood, Materials, 6, 410-420.
  • Nemli, G. & Aydin, A. (2007). Evaluation of the physical and mechanical properties of particleboard made from the needle litter of PinuspinasterAit, Industrial Crops and products, 26(3) 252-258.
  • Nemli, G. (2003). Suitability of kiwi prunings for particleboard manufacturing, Industrial Crops and products, 17,39-46.
  • Nemli, G. & Colakoglu, G. (2005). Effects of mimosa bark usage on some properties of particleboard. Turkish Journal of Agriculture and Forestry, 29, 227-30.
  • Nemli, G., Kırcı, H., Serdar B. & Ay, N. (2003). Suitability of kiwi pruning for particleboard manufacturing. Industrial Crops and products, 17, 39-46.
  • Nemli, G., Demirel, S., Gümüşkaya, E., Aslan, M. & Acar, C. (2009). Feasibility of incorporating waste grass clippings (Lolium perenne L.) in particleboard composites. Waste Manage, 29, 1129-31
  • Ndazi, B. & Tesha, J. V. (2006). Some opportunities and challenges of producing bio-composites from non-wood residues. Journal of materials science, 41, 6984-90.
  • Nourbakhsh, A., Farhani, B. F. & Ashori, A. (2011). Nano-SiO2 filled rice husk/ polypropylene composites: physico-mechanical properties. Industrial Crops and products, 33, 183-7.
  • Ntalos, G. A. & Grigoriou, A. H. (2002). Characterization and utilization of vine prunings as a wood substitute for particleboard production, Industrial Crops and products, 16, 59-68.
  • Peng, W., Yue, X., Chen, H., Ma, N.L., Quan, Z., Yu, Q. & et al. (2022). A review of plants formaldehyde metabolism: Implications for hazardous emissions and phytoremediation, Journal of Hazardous Materials, 436, 2-16, 129304.
  • Pirayesh, H., Khazaeian, A. & Tabarsa, T. (2012). The potential for using Walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Composites: Part B. doi:http://dx.doi.org/10.1016/ j.compositesb.2012.02.016.
  • Papadopoulos, A.N. & Hague, J.R.B. (2003). The potential forusing (Linum usitatissimum L.) shiv as a lignocellulosic raw material for particleboard. Industrial Crops and products, 17, 143-7.
  • Pereira, F., Pereira, J., Paiva, N., Ferra, J., Martins, J., Magalhaes, F. & Carvalho, L. (2016). Natural additive for reducing formaldehyde emissions in urea-formaldehyde resins. Journal of Renewable Materials, 4, 41-46.
  • Roumeli, E., Pavlidou, E., Papadopoulou, E., Vourlias, G., Bikiaris, D. & Paraskevopoulos, K. M. (2010). Synthesis, characterization and thermal analysis of urea formaldehyde/nanoSiO2 resins. ThermochimAct. http://dx.doi.org/ 10.1016/j.tca.2011.10.007.
  • Rokiah, H., Wan, N.W.N.A. & Othman, S. (1987). Evaluations of some properties of exterior particleboard made from oilpalm biomass. Journal of Composite Materials, 45(16), 1659-65.
  • Saka, K. & Yilmaz, İ. H. (2017). Agricultural biomass potential in Turkey, International Journal of Management and Applied Science 3, 79-81.
  • Sari, B., Nemli, G., Ayrılmış, N., Baharoglu, M., Gümüşkaya, E. & Bardak, S. (2012). Effects of chemical composition of wood and resin type on properties of particleboard, Lignocellulose Journal, 1, 174-184.
  • Schafer, M. & Roffael, E. (2000). On the formaldehyde release of wood, Europan Journal of Wood and Wood Products, 58, 259-264.
  • Shi, J. S., Li, S. & Fan, Y. (2006). Preparation and properties of waste tea leaves particleboard, Forestry Studies in China. 8, 4-45.
  • Tabarsa, T., Jahanshahi, S. & Ashori, A. (2010). Mechanical and physical properties of wheat straw boards bonded with a tanin modified phenol-formaldehyde adhesive. Composites: Part B 2010. 4110.1016/j.compositesb.2010.09.01.
  • TS 2479, (1976). Odunda Statik Sertliğin Tayini, Türk Standartları Enstitüsü, Ankara.
  • Ugur, C. (2021). Investigations on environmentally sensitive composite materials production from industrial lignocelulosic, KSU, Graduate School of Natural and Applied Sciences, Doctoral Thesis, Kahramanmaras.
  • Yasar, S. & Icel, B. (2016). Alkali modification of cotton (Gossypium hirsutum L.) stalks and its effect on properties of produced particleboards. Bioresource technology, 11, 7191-7204.
  • Yang, P. & Zhang, F. (2004). Study on cureconditions of PMDI-basedbinder in use of wheat straw particleboard. ChinaAdhes; 14:37-9.
  • Yang, H.S. & Kim, H.J. (2003). Rice straw-wood particle composite for sound absorbing wooden construction materials, Bioresource technology, 86, 117-121.
  • Youngquist, J., English, B.E., Spelter, H. & Chow, S. (1993). Agricultural fibers in composition panels, Proceedings of the 27th International Particleboard/Composite Materials Symposium, March 30-April 1, Pullman, WA., USA.
  • Zheng Y., Pan Z., Zhang, R., EI-Mashad H.M, Pan, J. & Jenkins, B.M. (2009). Anaerobic digestion of salinecreepingwil dry egrass for biogas production and pretreatment of particleboard material. Bioresource technology, 100, 1582-8.

Lignoselülozik Esaslı İç Mekân Tasarım Panellerinde Bazı Teknolojik Özelliklerin ve Formaldehit Gazı Salınımının Belirlenmesi

Year 2025, Volume: 25 Issue: 2, 233 - 246, 30.09.2025
https://doi.org/10.17475/kastorman.1787616

Abstract

Çalışmanın amacı: Yıllık tesis atıklarından gaz emisyon standartlarına uygun bir kompozit türü olan lignoselülozik esaslı iç tasarım panelleri (LIDP) üretmektir.
Materyal ve yöntem: Test materyali olarak kızılçam yongaları ve yıllık bitki artıklarından pamuk sapları, ayçiçeği sapları ve buğday sapları kullanıldı. Testler kapsamında fiziksel özelliklerden su alma (WU) ve kalınlık artış (TI) değerleri ölçülmüş ve teknolojik özelliklerden bazıları (Janka sertliği (JH), yüzeye dik vida tutma mukavemeti (VHS), çivi tutma mukavemeti (NHS) ve yüzey sağlamlık mukavemeti (SSS)) ölçüldü. Benzer şekilde kompozit panellerin formaldehit gaz salınım (FGR) değerleri perforator yöntemine göre belirlendi.
Temel sonuçlar: Fiziksel özelliklerde su alma ve kalınlık artışı ölçüm sonuçları, test panellerinin kullanım standartlarında aranan kriterleri karşılamadığını gösterdi. Teknolojik özellikler açısından panel matrisindeki yıllık atık tesis oranı arttıkça direnç değerleri de azaldı. EN 13986'ya gore değerlendirilen formaldehit gazı salınımlarında (FGR) en iyi sonuçlar WCR-SSR karışımlarından üretilen LIDP'de elde edildi.
Araştırma vurguları: Yıllık bitki artıklarının standart özelliklere sahip çevre dostu lignoselülozik esaslı içmekân tasarım panelleri (LIDP) üretimine uygunluğunun araştırılması.

Project Number

2018/2-39D

References

  • Abdolzadeh, H., Doosthoseini, K., Karimi, A.N., & Enayati, A.A. (2011). The effect of acetylated particle distribution and type of resin on physical and mechanical properties of poplar particleboard. European Journal of Wood and Wood Products, 69, 3–10. http://dx.doi.org/ 10.1007/s00107-009-0390-5.
  • Akbulut, T. (1991). Orus-Vezirköprü Yonga levha Fabrikasında Üretilen Levhaların Teknolojik Özellikleri. Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • ASTM-D 1761-88, (1995). Standard Test Methods for Mechanical Fasteners in Wood, ASTM.
  • Ashori, A. & Nourbakhsh, A. (2010). Reinforced polypropylene composites: effects of chemical compositions and particle size. Bioresource Technolgy, 101, 2515–9
  • Ashori, A. & Nourbakhsh, A. (2008). Effect of pres cycle time and resin contents on physical and mechanical properties of particleboard panels made from the under utilized low-quality raw materials. Industrial crops and products, 28(2), 225-30.
  • Ayrilmis, N., Buyuksari, U., Avci, E. & Koc, E. (2009). Utilization of pine (Pinus pinea L.) cone in manufacture of wood based composite. Forest Ecologyand Management, 259, 65-70.
  • Bardak, S., Sari, B., Nemli, G., Kırcı, H. & Baharoglu, M. (2011). The effect of decor paperproperties and adhesive type on some properties of particleboard. International Journal of Adhesion and Adhesives, 1, 412–5.
  • Bardak, S., Nemli, G. & Bardak, T. (2019). The quality comparison of particleboards produced from heartwood and sapwood of European larch, Moderas Ciencia y tecnologia. 21, 511-520.
  • Bektas, I., Güler, C., Kalaycioğlu, H., Mengeloğlu, F. & Nacar, M. (2005). The manufacture of particleboards using sunflower stalks (Helianthus annuus L.) and poplar wood (Populus alba L.), Jounrnal of Composite mateials. 39, 467-473.
  • Łebkowska, M., Radzıwıłł, M.Z., Tabernacka, A. (2017). Adhesives based on formaldehyde-environmental problems. Division of Biology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warszawa, Poland. Journal of Biotechnology, 63-65.
  • Bekalo, S.A. & Reinhardt, H.W. (2010). Fibers of coffee husk and hulls for the production of particleboard, Mater. Struct. 43, 1049-1060.
  • BS EN 13986 (2005). Wood-based panels for use in construction-characteristics, evaluation of conformity and marking. British Standards Institution (BSI).
  • Buyuksari, U. Ayrilmis, N. Avci, E. & Koc, E. (2010). Evaluation of the physical, mechanical properties and formaldehyde emission of particleboard manufactured from waste stone pine (Pinus pinea L.) cones, Bioresource technology, 101, 255-259.
  • Dunky, M. & Pizzi, A. (2002). Wood adhesives. In: Chaudhury M, Pocius AV, editors. Adhesivescience and engineering -2: surfaces, chemistry and applications. Amsterdam: Elsevier; p. 1039–103.
  • EN 312 (2005). Particleboards-specifications, European Committee for Standardization, Brussels–Belgium.
  • EN 320 (2011). Particleboards and fiberboards - determination of resistance to axial withdrawal of screws, European Committee for Standardization, Brussels–Belgium.
  • EN 311 (2005). Wood-based panels-Surface soundness-test method, European Committee for Standardization, Brussels–Belgium.
  • EN 120 (1996). Wood based panels, determination of formaldehyde content in fiberboard by using perforator method, European Committee for Standardization, Brussels–Belgium.
  • EN 317 (1993). Particleboards and Fiberboards, Determination of Swelling in Thickness After Immersion. European Committee for Standardization, Brussels–Belgium.
  • Ferraz, P.F.P., Mendes, R. F., Marin, D. B., Paes, J. L., Cecchin, D., Barbari, M. (2020). Agricultural residues of lignocellulosic materials in cement composites, Applied Science. 10, 2-18.
  • Fiorelli, J., Sartori, D. L., CravoI, J.C.M., Junior, H.S., Rossignolo, J.A., Nascimento, M.F. & Lahr, F.A.R. (2013). Sugarcane bagasse and castor oil polyurethane adhesive-based particulate composite, Materials Research. 16, 1516-1539.
  • Gatani, M.P., Fiorelli, J., Medina, J.C., Arguello, R., Ruiz, A., Nascimento, M.F. & Savastano, H. (2013). Technical production viability and properties of particleboard made with peanut husks, Revista Materia, 18, 1286-1293.
  • Gurjar, R.M. (1993). Effect of different binders on properties of particleboard from cotton seed hulls with emphasis on water repellency. Bioresource technology, 43, 177-188.
  • Guler, C. & Sancar, S. (2017). The principle of a particle board plant and the effect of pressing techniques on board quality, Forestry Journal, 12, 1-10.
  • Guler, C. (2015). In the production of wood-based composite materials, some evaluation of annual plants, Selcuk-Technical Journal, 14, 70-78 (In Turkish).
  • Guntekin, E. & Karakus, B. (2008). Feasibility of using eggplant stalks (Solanum melongena) in the production of experimental particleboard, Industrial Crops and Products, 27, 354-358.
  • Ghani, A., Ashari, Z., Bawon, P. & Lee, S. (2018). Reducing formaldehyde emission of urea formaldehyde-bonded particleboard by addition of amines as formaldehyde scavenger. Building and Environment, 142, 188-194. https ://doi. org/10.1016/j.build env.2018.06.020
  • Gu, J. Y. (2015). Present situation and development trend of wood adhesives in China. Adhesion, 36(02), 29-31 (in Chinese).
  • Guru, M., Atar, M. & Yıldırım, R. (2008). Production of polymer matrix composite particleboard from walnut shell and improvement of its requirements, Materials and Design, 29, 284-287.
  • Guru, M., Tekeli, S. & Bilici, I. (2006). Manufacturing of urea formaldehyde - based composite particleboard from almond shell, Materials and Design, 27, 1148-1151.
  • Gwon, J.G., Lee, S.Y., Chun. S.J., Doh, G.H. & Kim, J.H. (2010). Effects of chemical treatments of hybrid fillers on thephysical and thermal properties of wood plastic composites. Composites: Part A, 41, 1491-7.
  • Hamidreza, P., Khanjanzadeh, H. & Salari, A. (2013). Effect of using walnut/almond shells on the physical, mechanical properties and formaldehyde emission of particleboard, Compos. Part B, 45, 858-863.
  • Hashida, K., Ohara, S. & Makino, R. (2006). Improvement of formaldehyde scavenging ability of condensed tannins by ammonia treatment. Holzforschung, 60(20), 178-183. https ://doi.org/10.1515/HF.2006.029.
  • Kalaycıoglu, H. & Çolakoglu, G. (1994). Çeşitli Ağaç Türlerinden Üretilmiş Kontrplak ve Yonga Levhalardan, Üretim Şartlarına Bağlı Olarak Formaldehit Çıkışının Sınırlandırılması İmkanları, Proje No: TOAG-935, Trabzon.
  • Kalaycioglu, H. (1992). Utilization of crops residues on particleboard production, Proc. of ORENKO, First Forest Products Symp. KTU, Faculty of Forestry, Trabzon, Turkey. 288-292.
  • Kamdem, D.P. (2004). Properties of wood plastic composites made of recycled HDPE and wood flour from CCA-treated wood removed from service, Compos. A, 35, 347-355.
  • Kim, S. (2009). Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission, Bioresource technology, 100, 744-748.
  • Kim, S., Kim, J.A., Kim, H.J. & Kim, S.D. (2006). Determination of formaldehyde and TVOC emission factor from wood based composites by small chamber method. Polymer Testing, 25, 605-14
  • Kozlowski, R. & Piotrowski, R. (1987). Flax shaves saw dust production, Works of the National Natural Fibers Institute, 31, 132-142.
  • Kunaver, M., Medved, S., Cuk, N., Jasiukaitytė, E. & Poljanšek, I. (2010). T. Strnad, Application of liquefied wood as a new particle board adhesive system. Bioresource technology, 101, 1361-1368.
  • Lei, H., Du, G., Pizzi, A. & Celzard, A. (2008). Influence of nanoclay on urea formaldehyde resins for wood adhesive sandits model. Journal of applied polymer science, 109, 2442-51.
  • Liang, J., Wu, J. & Xu., J. (2021). Low-formaldehyde emission composite particleboard manufactured from waste chestnut bur, Journal of Wood Science, 67, 2-10.
  • Lin, R., Sun, J., Yue, C., Wang, X., Tu, D. & Gao, Z. (2014). Study on preparation and properties of phenol-formaldehyde-chinese fir liquefaction copolymer resin, Moderas Ciencia y tecnologia, 16, 159-174.
  • Martins, R. S. F., Gonçalves, F. G., Lelis, R. C. C., Segundinho, P. G. A., Nunes, A.M., Vidaurre, G.B., Chaves, I. L. S. & Santiago, S. B. (2020). Physical properties and formaldehyde emission in particleboards of Eucalyptus sp. and lignocellulosic agro-industrial waste, Scientia Forestalis, 48, 1-13.
  • Murata, K., Watanabe, Y. & Nakano, T. (2013). Effect of thermal treatment of veneer on formaldehyde emission of poplar plywood, Materials, 6, 410-420.
  • Nemli, G. & Aydin, A. (2007). Evaluation of the physical and mechanical properties of particleboard made from the needle litter of PinuspinasterAit, Industrial Crops and products, 26(3) 252-258.
  • Nemli, G. (2003). Suitability of kiwi prunings for particleboard manufacturing, Industrial Crops and products, 17,39-46.
  • Nemli, G. & Colakoglu, G. (2005). Effects of mimosa bark usage on some properties of particleboard. Turkish Journal of Agriculture and Forestry, 29, 227-30.
  • Nemli, G., Kırcı, H., Serdar B. & Ay, N. (2003). Suitability of kiwi pruning for particleboard manufacturing. Industrial Crops and products, 17, 39-46.
  • Nemli, G., Demirel, S., Gümüşkaya, E., Aslan, M. & Acar, C. (2009). Feasibility of incorporating waste grass clippings (Lolium perenne L.) in particleboard composites. Waste Manage, 29, 1129-31
  • Ndazi, B. & Tesha, J. V. (2006). Some opportunities and challenges of producing bio-composites from non-wood residues. Journal of materials science, 41, 6984-90.
  • Nourbakhsh, A., Farhani, B. F. & Ashori, A. (2011). Nano-SiO2 filled rice husk/ polypropylene composites: physico-mechanical properties. Industrial Crops and products, 33, 183-7.
  • Ntalos, G. A. & Grigoriou, A. H. (2002). Characterization and utilization of vine prunings as a wood substitute for particleboard production, Industrial Crops and products, 16, 59-68.
  • Peng, W., Yue, X., Chen, H., Ma, N.L., Quan, Z., Yu, Q. & et al. (2022). A review of plants formaldehyde metabolism: Implications for hazardous emissions and phytoremediation, Journal of Hazardous Materials, 436, 2-16, 129304.
  • Pirayesh, H., Khazaeian, A. & Tabarsa, T. (2012). The potential for using Walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Composites: Part B. doi:http://dx.doi.org/10.1016/ j.compositesb.2012.02.016.
  • Papadopoulos, A.N. & Hague, J.R.B. (2003). The potential forusing (Linum usitatissimum L.) shiv as a lignocellulosic raw material for particleboard. Industrial Crops and products, 17, 143-7.
  • Pereira, F., Pereira, J., Paiva, N., Ferra, J., Martins, J., Magalhaes, F. & Carvalho, L. (2016). Natural additive for reducing formaldehyde emissions in urea-formaldehyde resins. Journal of Renewable Materials, 4, 41-46.
  • Roumeli, E., Pavlidou, E., Papadopoulou, E., Vourlias, G., Bikiaris, D. & Paraskevopoulos, K. M. (2010). Synthesis, characterization and thermal analysis of urea formaldehyde/nanoSiO2 resins. ThermochimAct. http://dx.doi.org/ 10.1016/j.tca.2011.10.007.
  • Rokiah, H., Wan, N.W.N.A. & Othman, S. (1987). Evaluations of some properties of exterior particleboard made from oilpalm biomass. Journal of Composite Materials, 45(16), 1659-65.
  • Saka, K. & Yilmaz, İ. H. (2017). Agricultural biomass potential in Turkey, International Journal of Management and Applied Science 3, 79-81.
  • Sari, B., Nemli, G., Ayrılmış, N., Baharoglu, M., Gümüşkaya, E. & Bardak, S. (2012). Effects of chemical composition of wood and resin type on properties of particleboard, Lignocellulose Journal, 1, 174-184.
  • Schafer, M. & Roffael, E. (2000). On the formaldehyde release of wood, Europan Journal of Wood and Wood Products, 58, 259-264.
  • Shi, J. S., Li, S. & Fan, Y. (2006). Preparation and properties of waste tea leaves particleboard, Forestry Studies in China. 8, 4-45.
  • Tabarsa, T., Jahanshahi, S. & Ashori, A. (2010). Mechanical and physical properties of wheat straw boards bonded with a tanin modified phenol-formaldehyde adhesive. Composites: Part B 2010. 4110.1016/j.compositesb.2010.09.01.
  • TS 2479, (1976). Odunda Statik Sertliğin Tayini, Türk Standartları Enstitüsü, Ankara.
  • Ugur, C. (2021). Investigations on environmentally sensitive composite materials production from industrial lignocelulosic, KSU, Graduate School of Natural and Applied Sciences, Doctoral Thesis, Kahramanmaras.
  • Yasar, S. & Icel, B. (2016). Alkali modification of cotton (Gossypium hirsutum L.) stalks and its effect on properties of produced particleboards. Bioresource technology, 11, 7191-7204.
  • Yang, P. & Zhang, F. (2004). Study on cureconditions of PMDI-basedbinder in use of wheat straw particleboard. ChinaAdhes; 14:37-9.
  • Yang, H.S. & Kim, H.J. (2003). Rice straw-wood particle composite for sound absorbing wooden construction materials, Bioresource technology, 86, 117-121.
  • Youngquist, J., English, B.E., Spelter, H. & Chow, S. (1993). Agricultural fibers in composition panels, Proceedings of the 27th International Particleboard/Composite Materials Symposium, March 30-April 1, Pullman, WA., USA.
  • Zheng Y., Pan Z., Zhang, R., EI-Mashad H.M, Pan, J. & Jenkins, B.M. (2009). Anaerobic digestion of salinecreepingwil dry egrass for biogas production and pretreatment of particleboard material. Bioresource technology, 100, 1582-8.
There are 71 citations in total.

Details

Primary Language English
Subjects Forestry Sciences (Other)
Journal Section Research Article
Authors

Celal Uğur

İbrahim Bektaş

Project Number 2018/2-39D
Early Pub Date September 22, 2025
Publication Date September 30, 2025
Submission Date February 29, 2024
Acceptance Date April 8, 2025
Published in Issue Year 2025 Volume: 25 Issue: 2

Cite

APA Uğur, C., & Bektaş, İ. (2025). Determination of Some Technological Properties and Formaldehyde Gas Release in Lignocellulosic Based Interior Design Panels. Kastamonu University Journal of Forestry Faculty, 25(2), 233-246. https://doi.org/10.17475/kastorman.1787616
AMA Uğur C, Bektaş İ. Determination of Some Technological Properties and Formaldehyde Gas Release in Lignocellulosic Based Interior Design Panels. Kastamonu University Journal of Forestry Faculty. September 2025;25(2):233-246. doi:10.17475/kastorman.1787616
Chicago Uğur, Celal, and İbrahim Bektaş. “Determination of Some Technological Properties and Formaldehyde Gas Release in Lignocellulosic Based Interior Design Panels”. Kastamonu University Journal of Forestry Faculty 25, no. 2 (September 2025): 233-46. https://doi.org/10.17475/kastorman.1787616.
EndNote Uğur C, Bektaş İ (September 1, 2025) Determination of Some Technological Properties and Formaldehyde Gas Release in Lignocellulosic Based Interior Design Panels. Kastamonu University Journal of Forestry Faculty 25 2 233–246.
IEEE C. Uğur and İ. Bektaş, “Determination of Some Technological Properties and Formaldehyde Gas Release in Lignocellulosic Based Interior Design Panels”, Kastamonu University Journal of Forestry Faculty, vol. 25, no. 2, pp. 233–246, 2025, doi: 10.17475/kastorman.1787616.
ISNAD Uğur, Celal - Bektaş, İbrahim. “Determination of Some Technological Properties and Formaldehyde Gas Release in Lignocellulosic Based Interior Design Panels”. Kastamonu University Journal of Forestry Faculty 25/2 (September2025), 233-246. https://doi.org/10.17475/kastorman.1787616.
JAMA Uğur C, Bektaş İ. Determination of Some Technological Properties and Formaldehyde Gas Release in Lignocellulosic Based Interior Design Panels. Kastamonu University Journal of Forestry Faculty. 2025;25:233–246.
MLA Uğur, Celal and İbrahim Bektaş. “Determination of Some Technological Properties and Formaldehyde Gas Release in Lignocellulosic Based Interior Design Panels”. Kastamonu University Journal of Forestry Faculty, vol. 25, no. 2, 2025, pp. 233-46, doi:10.17475/kastorman.1787616.
Vancouver Uğur C, Bektaş İ. Determination of Some Technological Properties and Formaldehyde Gas Release in Lignocellulosic Based Interior Design Panels. Kastamonu University Journal of Forestry Faculty. 2025;25(2):233-46.

14178  14179       14165           14166           14167            14168