Research Article
BibTex RIS Cite

Experimental Investigation on the Material Properties of Historical Chestnut and Elm Structural Timbers

Year 2025, Volume: 25 Issue: 2, 247 - 261, 30.09.2025
https://doi.org/10.17475/kastorman.1787640

Abstract

Aim of study: This study aims to experimentally investigate the changes in the physical and mechanical properties of wood elements from two tree species, used as load-bearing structures 150 years ago and exposed to similar environmental conditions, due to natural aging over time.
Area of study: A historical wooden building in rural Giresun, Türkiye, was selected.
Material and method: Species identification tests were performed on the samples, followed by density, hardness, bending, and compression tests according to relevant standards.
Main results: In this study, chestnut and elm wood samples exposed to identical physical conditions and comparable biological degradation were examined. The experimental findings revealed that the reductions in compressive and bending strengths were nearly equivalent for both species. For comparative purposes, data from sound chestnut and elm wood collected from the same region were employed as the control group.
Research highlights: It is evident that chestnut and elm species are frequently used together in registered and protected structures in the region, and that elm, in particular, occurs in small groups within Turkish forests and is regarded as a valuable wood species. Since chestnut exhibits mechanical properties similar to those of elm as a result of natural aging, it is proposed that chestnut may be used as a substitute for elm in regional restoration practices when necessary.

References

  • Akkemik, Ü. (1995). Ülkemizde doğal yetişen karaağaç (Ulmus L.) taksonlarının morfolojik özellikleri, İstanbul Üniversitesi Orman Fakültesi Dergisi, 45(2), 93-115. (In Turkish)
  • As, N., Koç, K.H., Doğu, D., Atik, C., Aksu, B. & Erdinler, S. (2001). Türkiye'de yetişen endüstriyel öneme sahip ağaçların anatomik, fiziksel, mekanik ve kimyasal özellikleri, İstanbul Üniversitesi Orman Fakültesi Dergisi, 51(1), 71-88. (In Turkish)
  • Ay, N. & Şahin, H. (2002a). Maçka-Çatak bölgesi Anadolu kestanesi (Castanea sativa Mill.) odununun bazı fiziksel özellikleri, Kafkas Üniversitesi Artvin Orman Fakültesi Dergisi, 3 (1), 63-71. (In Turkish)
  • Ay, N. & Şahin, H. (2002b). Maçka-Çatak bölgesi Anadolu kestanesi (Castanea sativa Mill.) odununun bazı mekanik özellikleri, Kafkas Üniversitesi Artvin Orman Fakültesi Dergisi, 3 (1), 87-95. (In Turkish) Bab. (2000). Bs200Pro Image System Software ISO 9001:2000.
  • Berkel, A. (1970). Ağaç malzeme teknolojisi (Cilt 1). İstanbul Üniversitesi Orman Fakültesi Yayını No. 14481147, Kutulmuş Matbaası, İstanbul. (In Turkish)
  • BS EN 350-2. (1994). Durability of wood and wood-based products. Natural durability of solid wood. British Standard, 389 Chiswick High Road London W4 4AL.
  • BS EN 408:2010 + A1:2012 (2012). Timber structures. Structural timber and glued laminated timber. Determination of some physical and mechanical properties. British Standard, 389 Chiswick High Road London W4 4AL.
  • BS EN 1534. (2020). Wood flooring and parquet - Determination of resistance to indentation - Test method. British Standard, 389 Chiswick High Road London W4 4AL.
  • Cavalli, A., Cibecchini, D., Togni, M. & Sousa, H. S. (2016). A review on the mechanical properties of aged wood and salvaged timber. Construction and Building Materials, 114, 681-687.
  • Chen, C., Kuang, Y., Zhu, S., Burgert, I., Keplinger, T. & et al. (2020). Structure–property–function relationships of natural and engineered wood. Nature Reviews Materials, 5, 642-666. https://doi.org/10.1038/s41578-020-0195-z
  • Eriç, M. (2016). Yapı fiziği ve malzemesi (4. Baskı), Literatür Yayınları, İstanbul. (In Turkish)
  • Fengel, D. & Wegener, G. (1989). Wood: chemistry, ultrastructure, reactions (2nd Ed.) Walter de Gruyter, Berlin, New York.
  • Gerçek, Z. (2011). Doğu Karadeniz bölgesindeki egzotik gymnospermae (açık tohumlular) taksonlarının odun atlası, KTÜ Basımevi, Trabzon, Türkiye. (In Turkish)
  • Ghavidel, A., Gelbrich, J., Kuqo, A., Vasilache, V. & Sandu, I. (2020). Investigation of archaeological European white elm (Ulmus laevis) for identifying and characterizing the kind of biological degradation. Heritage, 3(4), 1083-1093. http://dx.doi.org/10.3390/heritage3040060
  • Han, L., Wang, K., Wang, W., Guo, J. & Zhou, H. (2019). Nanomechanical and topochemical changes in elm wood from ancient timber constructions in relation to natural aging. Materials, 12(5), 786. http://dx.doi.org/10.3390/ma12050786
  • Huang, C. L., Lindström, H., Nakada, R. & Ralston, J. (2003). Cell wall structure and wood properties determined by acoustics-a selective review. Holz als Roh-und Werkstoff, 61,321-335. http://dx.doi.org/10.1007/s00107-003-0398-1
  • ISO 13061-2. (2014). Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 2: Determination of density for physical and mechanical tests. International Standard, ISO Copyright Office Case Postale 56 • CH-1211 Geneva 20, Switzerland.
  • ISO 13061-3. (2014). Physical and mechanical properties of wood -Test methods for small clear wood specimens - Part 3: Determination of ultimate strength in static bending. International Standard, ISO Copyright Office Case Postale 56 • CH-1211 Geneva 20, Switzerland.
  • Ives, E. (2001). A guide to wood microtomy: making quality microslides of wood sections, Ipswich, United Kingdom.
  • Kettunen, P.O. (2006). Wood structure and properties. Trans Tech Publications, Limited, Stäfa-Zurich, Switzerland.
  • Kus Sahin, C., Topay, M. & Var, A.A. (2020). A study on suitability of some wood species for landscape applications: surface color, hardness and roughness changes at outdoor conditions. Wood Research, 65(3), 395-404.
  • Machado, J. S., Pereira, F. & Quilhó, T. (2019). Assessment of old timber members: importance of wood species identification and direct tensile test information. Construction and Building Materials, 207,651-660.
  • Mania, P., Siuda, F. & Roszyk, E. (2020). Effect of slope grain on mechanical properties of different wood species. Materials, 13 (7), 1503.
  • Merev, N. (1998). Doğu Karadeniz bölgesindeki doğal Angiospermae taksonlarının odun anatomisi. Trabzon, Türkiye: KTÜ Basımevi, 9-12. (In Turkish)
  • Ramage, M.H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T. & et al. (2017). The wood from the trees: the use of timber in construction. Renewable and Sustainable Energy Reviews, 68 (Part 1),333-359. http://dx.doi.org/10.1016/j.rser.2016.09.107
  • Richardson. B.A. (1993). Wood preservation, 2nd ed. E & FN Spon, an imprint of Chapman & Hall, London, Glasgow.
  • Romagnoli, M., Cavalli, D. & Spina, S. (2014). Wood quality of chestnut: relationship between ring width, specific gravity, and physical and mechanical properties. Bioresources, 9 (1), 1132-1147.
  • Rowell, R.M. (2005). Moisture properties. In: Handbook of wood chemistry and wood composites, Roger M. Rowell, ed., 77-98, CRC Press.
  • Rowell, R.M. & Barbour, J. (1990). Archaeological wood: properties, chemistry, and preservation. American Chemical Society Advances in Chemistry Series 225, Washington, DC.
  • Sjostrom, E. (1993). Wood Chemistry: Fundamentals and Applications. Elsevier.
  • Thaler, N., Žlahtič, M. & Humar, M. (2014). Performance of recent and old sweet chestnut (Castanea sativa) wood. International Biodeterioration & Biodegradation, 94, 141-145.
  • Topaloglu, E., Ustaomer, D., Ozturk, M. & Pesman, E. (2021). Changes in wood properties of chestnut wood structural elements with natural aging. Maderas. Ciencia y Tecnología, 23, 1-12.
  • Topaloglu, E. (2023). Effect of natural aging on selected properties of wooden facade elements made of scots pine and chestnut. Maderas. Ciencia y Tecnología, 25.
  • Wiedenhoeft, A. (2010). Structure and function of wood (Chapter 3). Wood Handbook Wood As An Engineering material, Forest Products Laboratory. 2010. Wood handbook—Wood as an engineering material. General Technical Report FPL-GTR-190. Madison, WI: U.S.
  • Witomski, P., Olek, W. & Bonarski, J. T. (2016). Changes in strength of Scots pine wood (Pinus silvestris L.) decayed by brown rot (Coniophora puteana) and white rot (Trametes versicolor). Construction and Building Materials, 102 (Part 1), 162-166.

Tarihi Kestane ve Karaağaç Yapısal Ahşap Elemanlarının Malzeme Özelliklerinin Deneysel Olarak İncelenmesi

Year 2025, Volume: 25 Issue: 2, 247 - 261, 30.09.2025
https://doi.org/10.17475/kastorman.1787640

Abstract

Çalışmanın amacı: Bu çalışma, 150 yıl önce taşıyıcı yapı elemanı olarak kullanılan ve benzer çevresel koşullara maruz kalan iki ağaç türüne ait odun elemanlarının, zamanla doğal yaşlanma süreçlerinin etkisiyle fiziksel ve mekanik özelliklerinde meydana gelen değişiklikleri deneysel olarak incelemeyi amaçlamaktadır.
Çalışma alanı: Giresun'un kırsal bölgesindeki tarihi bir ahşap yapı seçilmiştir.
Materyal ve yöntem: Örnekler üzerinde tür tespiti yapılmış, ardından ilgili standartlara göre yoğunluk, sertlik, eğilme ve basınç testleri uygulanmıştır.
Temel sonuçlar: Çalışmada, aynı fiziksel koşullar altında olan ve benzer biyolojik hasara maruz kalan kestane ve karağaç odunu örnekleri karşılaştırılmıştır. Deneysel sonuçlar, her iki türün basınç ve eğilme dayanımlarındaki azalmanın neredeyse aynı olduğunu göstermiştir. Aynı bölgeden alınan sağlam kestane ve karaağaç odunu verileri, karşılaştırma için kontrol grubu olarak kullanılmıştır.
Araştırma vurguları: Bölgedeki tescilli ve korunan yapılarda kestane ve karaağaç türlerinin sıklıkla birlikte kullanıldığını ve özellikle karaağaç türünün Türkiyedeki ormanlarda küçük gruplar halinde yayıldığını ve değerli bir odun türü olduğunu göstermektedir. Kestane türünün doğal yaşlanma etkisi sonucunda karaağaç türü ile benzer mekanik özellikler sunmasından dolayı bölgedeki restorasyonlarda karaağaç yerine gerektiği durumlarda kullanılabileceği önerilmektedir.

References

  • Akkemik, Ü. (1995). Ülkemizde doğal yetişen karaağaç (Ulmus L.) taksonlarının morfolojik özellikleri, İstanbul Üniversitesi Orman Fakültesi Dergisi, 45(2), 93-115. (In Turkish)
  • As, N., Koç, K.H., Doğu, D., Atik, C., Aksu, B. & Erdinler, S. (2001). Türkiye'de yetişen endüstriyel öneme sahip ağaçların anatomik, fiziksel, mekanik ve kimyasal özellikleri, İstanbul Üniversitesi Orman Fakültesi Dergisi, 51(1), 71-88. (In Turkish)
  • Ay, N. & Şahin, H. (2002a). Maçka-Çatak bölgesi Anadolu kestanesi (Castanea sativa Mill.) odununun bazı fiziksel özellikleri, Kafkas Üniversitesi Artvin Orman Fakültesi Dergisi, 3 (1), 63-71. (In Turkish)
  • Ay, N. & Şahin, H. (2002b). Maçka-Çatak bölgesi Anadolu kestanesi (Castanea sativa Mill.) odununun bazı mekanik özellikleri, Kafkas Üniversitesi Artvin Orman Fakültesi Dergisi, 3 (1), 87-95. (In Turkish) Bab. (2000). Bs200Pro Image System Software ISO 9001:2000.
  • Berkel, A. (1970). Ağaç malzeme teknolojisi (Cilt 1). İstanbul Üniversitesi Orman Fakültesi Yayını No. 14481147, Kutulmuş Matbaası, İstanbul. (In Turkish)
  • BS EN 350-2. (1994). Durability of wood and wood-based products. Natural durability of solid wood. British Standard, 389 Chiswick High Road London W4 4AL.
  • BS EN 408:2010 + A1:2012 (2012). Timber structures. Structural timber and glued laminated timber. Determination of some physical and mechanical properties. British Standard, 389 Chiswick High Road London W4 4AL.
  • BS EN 1534. (2020). Wood flooring and parquet - Determination of resistance to indentation - Test method. British Standard, 389 Chiswick High Road London W4 4AL.
  • Cavalli, A., Cibecchini, D., Togni, M. & Sousa, H. S. (2016). A review on the mechanical properties of aged wood and salvaged timber. Construction and Building Materials, 114, 681-687.
  • Chen, C., Kuang, Y., Zhu, S., Burgert, I., Keplinger, T. & et al. (2020). Structure–property–function relationships of natural and engineered wood. Nature Reviews Materials, 5, 642-666. https://doi.org/10.1038/s41578-020-0195-z
  • Eriç, M. (2016). Yapı fiziği ve malzemesi (4. Baskı), Literatür Yayınları, İstanbul. (In Turkish)
  • Fengel, D. & Wegener, G. (1989). Wood: chemistry, ultrastructure, reactions (2nd Ed.) Walter de Gruyter, Berlin, New York.
  • Gerçek, Z. (2011). Doğu Karadeniz bölgesindeki egzotik gymnospermae (açık tohumlular) taksonlarının odun atlası, KTÜ Basımevi, Trabzon, Türkiye. (In Turkish)
  • Ghavidel, A., Gelbrich, J., Kuqo, A., Vasilache, V. & Sandu, I. (2020). Investigation of archaeological European white elm (Ulmus laevis) for identifying and characterizing the kind of biological degradation. Heritage, 3(4), 1083-1093. http://dx.doi.org/10.3390/heritage3040060
  • Han, L., Wang, K., Wang, W., Guo, J. & Zhou, H. (2019). Nanomechanical and topochemical changes in elm wood from ancient timber constructions in relation to natural aging. Materials, 12(5), 786. http://dx.doi.org/10.3390/ma12050786
  • Huang, C. L., Lindström, H., Nakada, R. & Ralston, J. (2003). Cell wall structure and wood properties determined by acoustics-a selective review. Holz als Roh-und Werkstoff, 61,321-335. http://dx.doi.org/10.1007/s00107-003-0398-1
  • ISO 13061-2. (2014). Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 2: Determination of density for physical and mechanical tests. International Standard, ISO Copyright Office Case Postale 56 • CH-1211 Geneva 20, Switzerland.
  • ISO 13061-3. (2014). Physical and mechanical properties of wood -Test methods for small clear wood specimens - Part 3: Determination of ultimate strength in static bending. International Standard, ISO Copyright Office Case Postale 56 • CH-1211 Geneva 20, Switzerland.
  • Ives, E. (2001). A guide to wood microtomy: making quality microslides of wood sections, Ipswich, United Kingdom.
  • Kettunen, P.O. (2006). Wood structure and properties. Trans Tech Publications, Limited, Stäfa-Zurich, Switzerland.
  • Kus Sahin, C., Topay, M. & Var, A.A. (2020). A study on suitability of some wood species for landscape applications: surface color, hardness and roughness changes at outdoor conditions. Wood Research, 65(3), 395-404.
  • Machado, J. S., Pereira, F. & Quilhó, T. (2019). Assessment of old timber members: importance of wood species identification and direct tensile test information. Construction and Building Materials, 207,651-660.
  • Mania, P., Siuda, F. & Roszyk, E. (2020). Effect of slope grain on mechanical properties of different wood species. Materials, 13 (7), 1503.
  • Merev, N. (1998). Doğu Karadeniz bölgesindeki doğal Angiospermae taksonlarının odun anatomisi. Trabzon, Türkiye: KTÜ Basımevi, 9-12. (In Turkish)
  • Ramage, M.H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T. & et al. (2017). The wood from the trees: the use of timber in construction. Renewable and Sustainable Energy Reviews, 68 (Part 1),333-359. http://dx.doi.org/10.1016/j.rser.2016.09.107
  • Richardson. B.A. (1993). Wood preservation, 2nd ed. E & FN Spon, an imprint of Chapman & Hall, London, Glasgow.
  • Romagnoli, M., Cavalli, D. & Spina, S. (2014). Wood quality of chestnut: relationship between ring width, specific gravity, and physical and mechanical properties. Bioresources, 9 (1), 1132-1147.
  • Rowell, R.M. (2005). Moisture properties. In: Handbook of wood chemistry and wood composites, Roger M. Rowell, ed., 77-98, CRC Press.
  • Rowell, R.M. & Barbour, J. (1990). Archaeological wood: properties, chemistry, and preservation. American Chemical Society Advances in Chemistry Series 225, Washington, DC.
  • Sjostrom, E. (1993). Wood Chemistry: Fundamentals and Applications. Elsevier.
  • Thaler, N., Žlahtič, M. & Humar, M. (2014). Performance of recent and old sweet chestnut (Castanea sativa) wood. International Biodeterioration & Biodegradation, 94, 141-145.
  • Topaloglu, E., Ustaomer, D., Ozturk, M. & Pesman, E. (2021). Changes in wood properties of chestnut wood structural elements with natural aging. Maderas. Ciencia y Tecnología, 23, 1-12.
  • Topaloglu, E. (2023). Effect of natural aging on selected properties of wooden facade elements made of scots pine and chestnut. Maderas. Ciencia y Tecnología, 25.
  • Wiedenhoeft, A. (2010). Structure and function of wood (Chapter 3). Wood Handbook Wood As An Engineering material, Forest Products Laboratory. 2010. Wood handbook—Wood as an engineering material. General Technical Report FPL-GTR-190. Madison, WI: U.S.
  • Witomski, P., Olek, W. & Bonarski, J. T. (2016). Changes in strength of Scots pine wood (Pinus silvestris L.) decayed by brown rot (Coniophora puteana) and white rot (Trametes versicolor). Construction and Building Materials, 102 (Part 1), 162-166.
There are 35 citations in total.

Details

Primary Language English
Subjects Forestry Sciences (Other)
Journal Section Articles
Authors

Minel Ahu Kara Alaşalvar

Özlem Sağıroğlu Demirci

Early Pub Date September 22, 2025
Publication Date September 30, 2025
Submission Date April 19, 2024
Acceptance Date April 8, 2025
Published in Issue Year 2025 Volume: 25 Issue: 2

Cite

APA Kara Alaşalvar, M. A., & Sağıroğlu Demirci, Ö. (2025). Experimental Investigation on the Material Properties of Historical Chestnut and Elm Structural Timbers. Kastamonu University Journal of Forestry Faculty, 25(2), 247-261. https://doi.org/10.17475/kastorman.1787640
AMA Kara Alaşalvar MA, Sağıroğlu Demirci Ö. Experimental Investigation on the Material Properties of Historical Chestnut and Elm Structural Timbers. Kastamonu University Journal of Forestry Faculty. September 2025;25(2):247-261. doi:10.17475/kastorman.1787640
Chicago Kara Alaşalvar, Minel Ahu, and Özlem Sağıroğlu Demirci. “Experimental Investigation on the Material Properties of Historical Chestnut and Elm Structural Timbers”. Kastamonu University Journal of Forestry Faculty 25, no. 2 (September 2025): 247-61. https://doi.org/10.17475/kastorman.1787640.
EndNote Kara Alaşalvar MA, Sağıroğlu Demirci Ö (September 1, 2025) Experimental Investigation on the Material Properties of Historical Chestnut and Elm Structural Timbers. Kastamonu University Journal of Forestry Faculty 25 2 247–261.
IEEE M. A. Kara Alaşalvar and Ö. Sağıroğlu Demirci, “Experimental Investigation on the Material Properties of Historical Chestnut and Elm Structural Timbers”, Kastamonu University Journal of Forestry Faculty, vol. 25, no. 2, pp. 247–261, 2025, doi: 10.17475/kastorman.1787640.
ISNAD Kara Alaşalvar, Minel Ahu - Sağıroğlu Demirci, Özlem. “Experimental Investigation on the Material Properties of Historical Chestnut and Elm Structural Timbers”. Kastamonu University Journal of Forestry Faculty 25/2 (September2025), 247-261. https://doi.org/10.17475/kastorman.1787640.
JAMA Kara Alaşalvar MA, Sağıroğlu Demirci Ö. Experimental Investigation on the Material Properties of Historical Chestnut and Elm Structural Timbers. Kastamonu University Journal of Forestry Faculty. 2025;25:247–261.
MLA Kara Alaşalvar, Minel Ahu and Özlem Sağıroğlu Demirci. “Experimental Investigation on the Material Properties of Historical Chestnut and Elm Structural Timbers”. Kastamonu University Journal of Forestry Faculty, vol. 25, no. 2, 2025, pp. 247-61, doi:10.17475/kastorman.1787640.
Vancouver Kara Alaşalvar MA, Sağıroğlu Demirci Ö. Experimental Investigation on the Material Properties of Historical Chestnut and Elm Structural Timbers. Kastamonu University Journal of Forestry Faculty. 2025;25(2):247-61.

14178  14179       14165           14166           14167            14168