BibTex RIS Cite

ORTAOKUL MATEMATİK DERS KİTAPLARINDA YER ALAN TEMSİLLERİN ÖĞRENME ALANLARINA VE SINIFLARA GÖRE İNCELENMESİ

Year 2017, Volume: 18 Issue: 3, 115 - 133, 01.08.2017

Abstract

Bu çalışmanın amacı ders kitaplarında yer alan sorularda kullanılan temsillerin ortaokul matematik dersi öğretim programında belirlenen öğrenme alanlarına ve sınıflara göre dağılımlarını analiz etmektir. Araştırma nitel bir araştırma olup, çalışmada MEB komisyonu tarafından hazırlanmış ortaokul ve 2015-2016 akademik yılında kullanımda olan ders kitaplarında yer alan sorular analiz edilmiştir. Araştırmanın bulgularına göre öğrenme alanları bazında dağılıma bakıldığında, “sayılar ve işlemler” ve “cebir” öğrenme alanında en çok cebirsel temsillere yer verilmekte iken “geometri ve ölçme” alanına ait sorular en çok model temsillerle ilişkilenmiştir. Diğer taraftan ders kitaplarında daha az dağılıma sahip olan “olasılık” ve “veri işleme” öğrenme alanlarına ait sorularda ise sözel temsiller daha fazla tercih edilmiştir. Temsillerin sınıflara göre dağılımına ait bulgular, cebirsel, sözel ve model temsillere, ortaokulun her kademesindeki ders kitaplarında daha fazla yer verildiğini, tablo, grafik ve gerçek yaşam temsillerinin ise her sınıf seviyesinde düşük oranlarda yer aldığını göstermektedir. Bulgulara ilgili tartışmaya yer verilmiştir ve bulgular önerilere yer verilmiştir.

References

  • Adadan, E. (2006). Promoting high school students’ conceptual understandings of the particulate nature of matter through multiple representations. Unpublished doctoral dissertation, Ohio State University, Ohio.
  • Adadan, E. (2013). Using multiple representations to promote grade 11 students’scientific understanding of the particle theory of matter. Research in science education, 43, 1079–1105.
  • Adu-Gyamfi, K. (2000). External multiple representations in mathematics teaching. Unpublished master’s thesis. North Carolina State University, USA.
  • Ainsworth, S. (1999). The functions of multiple representations. Computers and education, 33,131-152.
  • Ainsworth, S. and Van Labeke, N. (2004). Multiple forms of dynamic representation. Learning and instruction, 14(3), 241-255.
  • Akkuş, O. (2004). The effects of multiple representations-based instruction on seventh grade students’ algebra performance, attitude toward mathematics, and representation preference. Yayınlanmamış doktora tezi. Middle East Technical University, Ankara.
  • Çepni, S. (2014). Araştırma ve proje çalışmalarına giriş. Trabzon: Celepler Matbaacılık.
  • Chen, G. and Fu, X. (2003). Effects of multimodal information on learning performance and judgment of learning. Journal of educational computing research, 29(3), 349-362.
  • Cohen, L. and Manion, L. (1994). Surveys. Improving educational management through research and consultancy. London: Paul Chapman Publishing.
  • Fujita, T. and Jones, K. (2003). The place of experimental tasks in geometry teaching: Learning from the textbooks design of the early 20th Century. Research in mathematics education, 5, 47-62.
  • Haggarty, L. and Pepin, B. (2002). An investigation of mathematics textbooks and their use in English, French, and German classrooms: who gets an opportunity to learn what? british educational research journal, 28(4), 567-590.
  • Herman, J. L., Klein, D. C. D. and Abedi, J. (2000). Assessing student’s opportunity to learn: Teacher and student perspectives. Educational measurement: Issues and practice, 19 (4), 16-24.
  • Herman, M. F. (2002). Relationship of college students' visual preference to use of representations: Conceptual understanding of functions in algebra. Unpublished PhD dissertation, Columbus: Ohio State University.
  • Hines, E. (2002). Developing the concept of linear function: One student’s experiences with dynamic physical models. Journal of mathematical behavior, 20, 337-361.
  • Incikabi, L. (2012). After the reform in Turkey: A content analysis of SBS and TIMSS assessment in terms of mathematics content, cognitive domains, and item types. Education as change, 16(2), 301-312, DOI: 10.1080/16823206.2012.745758.
  • İncikabı, L., Pektaş, M. ve Süle, C. (2016). Ortaöğretime geçiş sınavlarındaki matematik ve fen sorularının PISA problem çözme çerçevesine göre incelenmesi. Journal of kirsehir education faculty, 17(2).
  • Johansson, M. (2003). Textbooks in mathematics education: a study of textbooks as the potentially implemented curriculum, Yayımlanmamış Yüksek Lisans Yezi. Lulea: Department of Mathematics, Lulea University of Technology.
  • Kaput, J. J. (1989). Linking representations in the symbol systems of algebra. İçinde Wagner, S. and Kieran, C. (Eds). Research issues in the learning and teaching of algebra (pp. 167-194). Virginia: NCTM Publications
  • Kepceoğlu, İ. and Karadeniz, S. (2017). Analysis of analogies in Turkish elementary mathematics textbooks. European journal of science and mathematics education, 5(4), 355-364.
  • Kepceoğlu, İ. and Yavuz, İ. (2016). Dinamik geometri yazılımlarıyla gerçekleştirilen matematik derslerinin ölçme ve değerlendirme örneği. Kastamonu eğitim dergisi, 25(1). 373-384.
  • Kress, G., Jewitt, C., Ogborn, J. and Tsatsarelis, C. (2001). Multimodal teaching and learning: The rhetorics of the science classroom. London: Continuum.
  • Larkin, H. J. (1991). Robust performance in algebra: the role of the problem representation. İçinde Wagner, S. and Kieran, C. (Eds.), Research issues in the learning and teaching of algebra (pp. 120- 135). Virginia: NCTM Publications.
  • Leitzel, R. J. (1991). Critical considerations for the future of algebra instruction. İçinde Wagner, S. and Kieran, C. (Eds.), Research issues in the learning and teaching of algebra (pp. 25-33). Virginia: NCTM Publications.
  • Lemke, J. (2004). The literacies of science. İçinde Saul E. W. (Ed.), Crossing borders in literacy and science instruction: Perspectives on theory and practice (pp. 33–47). Newark: International Reading Association/National Science Teachers Association.
  • Li, Y. (1999). An analysis of algebra content, content organization and presentation, and to-be-solved problems in eighth-grade mathematics textbooks from Hong Kong, Mainland China, Singapore, and the United States. Doctoral dissertation, University of Pittsburg. (UMI: AAT 9957757).
  • Mayer, R. (2003). The promise of multimedia learning using the same instructional design methods across different media. Learning and instruction, 13, 125-139.
  • Miles, M. B., and Huberman, A. M. (1994). Qualitative data analysis: A sourcebook. Beverly Hills: Sage Publications.
  • Milli Eğitim Bakanlığı (MEB) (2013). Ortaokul matematik dersi (5, 6, 7 ve 8. Sınıflar) matematik dersi öğretim programı. Ankara.
  • Moseley, B. and Brenner, M. E. (1997). Using multiple representations for conceptual change in pre- algebra: A comparision of variable usage with graphic and text based problems. (ERIC Document Reproduction Service: ED413184).
  • Mourad, N. M. (2005). Inductive reasoning in the algebra classroom. Published Master Thesis. (UMI No: 1431298).
  • Nair, A. and Pool, P. (1991). Mathematics methods: A resource book for primary school teachers. London: Macmillan Education Ltd.
  • National Council of Teachers of Mathematics (NCTM) (2000). Standarts for school mathematics. Reston, VA: NCTM
  • Norris, S., and Phillips, L. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87, 224-240.
  • Özgül, İ. and İncikabı, L. (2017). Prospective teachers’ representations for teaching note values: An analysis in the context of mathematics and music. Journal of education and training studies, 5(11), 129-140.
  • Pape, S. J., Bell, J. and Yetkin, I. E. (2003). Developing mathematical thinking and self-regulated learning: A teaching experiment in a seventh-grade mathematics classroom. Educational studies in mathematics, 53, 179-202.
  • Pektaş, M., İncikabı, L. and Yaz, Ö. V. (2015). An Analysis of middle school science textbooks in terms of TIMSS program framework. Adıyaman üniversitesi eğitim bilimleri dergisi, 5(1), 29-48.
  • Pektas, M. and Kurnaz, M. A. (2013). Difficulties of science teacher candidates in the articulation of transitions between table, graphical and pictorial representations. The international journal of social sciences, 18(1), 160-167.
  • Prain, V. and Tytler, R. (2012). Learning through constructing representations in science: A framework of representational construction affordances, International journal of science education, 34(17), 2751-2773.
  • Prain, V. and Waldrip, B. (2006). An exploratory study of teachers’ and students’ use of multi‐modal representations of concepts in primary science. International journal of science education, 28 (15), 1843-1866.
  • Prain, V. and Waldrip, B. (2010). Representing science literacies: An introduction. Research in science education, 40, 1-3.
  • Resnick, L. B. and Ford, W. W. (1981). The psychology of mathematics for instruction. Lawrence Erlbaum Associates.
  • Sankey, M., Birch, D. and Gardiner, M. (2010). Engaging students through multimodal learning environments: The journey continues. İçinde Steel, C.H., Keppell, M.J., Gerbic, P. and Housego, S. (Eds.), Curriculum, technology and transformation for an unknown future. Proceedings ascilite Sydney 2010 (pp.852-863).
  • Schmidt, W. H., McKnight, C. C., Houang, R. T., Wang, H., Wiley, D. E., Cogan, L. S., et al. (2001). Why schools matter: a cross-national comparison of curriculum and learning. San Francisco: Jossey-Bass.
  • Sert, Ö. (2007). Eighth grade students’ skills ın translating among different representations of algebraic concepts. Yüksek Lisans Tezi. Middle East Technical University, Ankara.
  • Spiro, R. J. and Jehng, J. C. (1990). Cognitive flexibility and hypertext: Theory and technology for the nonlinear and multidimensional traversal of complex subject matters. İçinde Nix, D. and Spiro, R. J. (Eds.), Cognition, education, and multimedia: Exploring ideas in high technology (pp. 163-205). Hillsdale, NJ: Erlbaum.
  • Törnroos, J. (2005). Mathematics textbooks, opportunity to learn and student achievement. Studies in educational evaluation. 31(4), 315-327.
  • Treagust, D., Chittelborough, G. and Mamiala, T. (2003). Students’ understanding of the role of scientific models in learning science. International journal of science education, 24(4), 357-368.
  • Tsui, C.-Y. and Treagust, D. F. (2003). Genetics reasoning with multiple external representations. Research in science education, 33(1), 111–135.
  • Van der Meij, J. and De Jong, T. (2006). Supporting students’ learning with multiple representations in a dynamic simulation-based learning environment. Learning and instruction, 16(3), 199–212.
  • Waldrip, B., Prain, V. and Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in science education, 40(1), 65–80.
  • Wu, H-K and Puntambekar, S. (2012). Pedagogical affordances of multiple external representations in scientific processes. Journal of science and educational technology, 21, 754–767.
  • Yerushalmy, M. and Schwartz, J. L. (1993). Seizing the opportunity to make algebra mathematically and pedagogically interesting. İçinde Romberg, A., Fennema, E. and Carpenter, T. P. (Eds.), Integrating research on the graphical representation of functions (pp. 41-68). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Zhu, Y. and Fan, L. (2004). An analysis of the representation of problem types in Chinese and US mathematics textbooks. Paper accepted for ICME-10 Discussion Group 14, 4-11 July: Copenhagen, Denmark

ORTAOKUL MATEMATİK DERS KİTAPLARINDA YER ALAN TEMSİLLERİN ÖĞRENME ALANLARINA VE SINIFLARA GÖRE İNCELENMESİ

Year 2017, Volume: 18 Issue: 3, 115 - 133, 01.08.2017

Abstract

References

  • Adadan, E. (2006). Promoting high school students’ conceptual understandings of the particulate nature of matter through multiple representations. Unpublished doctoral dissertation, Ohio State University, Ohio.
  • Adadan, E. (2013). Using multiple representations to promote grade 11 students’scientific understanding of the particle theory of matter. Research in science education, 43, 1079–1105.
  • Adu-Gyamfi, K. (2000). External multiple representations in mathematics teaching. Unpublished master’s thesis. North Carolina State University, USA.
  • Ainsworth, S. (1999). The functions of multiple representations. Computers and education, 33,131-152.
  • Ainsworth, S. and Van Labeke, N. (2004). Multiple forms of dynamic representation. Learning and instruction, 14(3), 241-255.
  • Akkuş, O. (2004). The effects of multiple representations-based instruction on seventh grade students’ algebra performance, attitude toward mathematics, and representation preference. Yayınlanmamış doktora tezi. Middle East Technical University, Ankara.
  • Çepni, S. (2014). Araştırma ve proje çalışmalarına giriş. Trabzon: Celepler Matbaacılık.
  • Chen, G. and Fu, X. (2003). Effects of multimodal information on learning performance and judgment of learning. Journal of educational computing research, 29(3), 349-362.
  • Cohen, L. and Manion, L. (1994). Surveys. Improving educational management through research and consultancy. London: Paul Chapman Publishing.
  • Fujita, T. and Jones, K. (2003). The place of experimental tasks in geometry teaching: Learning from the textbooks design of the early 20th Century. Research in mathematics education, 5, 47-62.
  • Haggarty, L. and Pepin, B. (2002). An investigation of mathematics textbooks and their use in English, French, and German classrooms: who gets an opportunity to learn what? british educational research journal, 28(4), 567-590.
  • Herman, J. L., Klein, D. C. D. and Abedi, J. (2000). Assessing student’s opportunity to learn: Teacher and student perspectives. Educational measurement: Issues and practice, 19 (4), 16-24.
  • Herman, M. F. (2002). Relationship of college students' visual preference to use of representations: Conceptual understanding of functions in algebra. Unpublished PhD dissertation, Columbus: Ohio State University.
  • Hines, E. (2002). Developing the concept of linear function: One student’s experiences with dynamic physical models. Journal of mathematical behavior, 20, 337-361.
  • Incikabi, L. (2012). After the reform in Turkey: A content analysis of SBS and TIMSS assessment in terms of mathematics content, cognitive domains, and item types. Education as change, 16(2), 301-312, DOI: 10.1080/16823206.2012.745758.
  • İncikabı, L., Pektaş, M. ve Süle, C. (2016). Ortaöğretime geçiş sınavlarındaki matematik ve fen sorularının PISA problem çözme çerçevesine göre incelenmesi. Journal of kirsehir education faculty, 17(2).
  • Johansson, M. (2003). Textbooks in mathematics education: a study of textbooks as the potentially implemented curriculum, Yayımlanmamış Yüksek Lisans Yezi. Lulea: Department of Mathematics, Lulea University of Technology.
  • Kaput, J. J. (1989). Linking representations in the symbol systems of algebra. İçinde Wagner, S. and Kieran, C. (Eds). Research issues in the learning and teaching of algebra (pp. 167-194). Virginia: NCTM Publications
  • Kepceoğlu, İ. and Karadeniz, S. (2017). Analysis of analogies in Turkish elementary mathematics textbooks. European journal of science and mathematics education, 5(4), 355-364.
  • Kepceoğlu, İ. and Yavuz, İ. (2016). Dinamik geometri yazılımlarıyla gerçekleştirilen matematik derslerinin ölçme ve değerlendirme örneği. Kastamonu eğitim dergisi, 25(1). 373-384.
  • Kress, G., Jewitt, C., Ogborn, J. and Tsatsarelis, C. (2001). Multimodal teaching and learning: The rhetorics of the science classroom. London: Continuum.
  • Larkin, H. J. (1991). Robust performance in algebra: the role of the problem representation. İçinde Wagner, S. and Kieran, C. (Eds.), Research issues in the learning and teaching of algebra (pp. 120- 135). Virginia: NCTM Publications.
  • Leitzel, R. J. (1991). Critical considerations for the future of algebra instruction. İçinde Wagner, S. and Kieran, C. (Eds.), Research issues in the learning and teaching of algebra (pp. 25-33). Virginia: NCTM Publications.
  • Lemke, J. (2004). The literacies of science. İçinde Saul E. W. (Ed.), Crossing borders in literacy and science instruction: Perspectives on theory and practice (pp. 33–47). Newark: International Reading Association/National Science Teachers Association.
  • Li, Y. (1999). An analysis of algebra content, content organization and presentation, and to-be-solved problems in eighth-grade mathematics textbooks from Hong Kong, Mainland China, Singapore, and the United States. Doctoral dissertation, University of Pittsburg. (UMI: AAT 9957757).
  • Mayer, R. (2003). The promise of multimedia learning using the same instructional design methods across different media. Learning and instruction, 13, 125-139.
  • Miles, M. B., and Huberman, A. M. (1994). Qualitative data analysis: A sourcebook. Beverly Hills: Sage Publications.
  • Milli Eğitim Bakanlığı (MEB) (2013). Ortaokul matematik dersi (5, 6, 7 ve 8. Sınıflar) matematik dersi öğretim programı. Ankara.
  • Moseley, B. and Brenner, M. E. (1997). Using multiple representations for conceptual change in pre- algebra: A comparision of variable usage with graphic and text based problems. (ERIC Document Reproduction Service: ED413184).
  • Mourad, N. M. (2005). Inductive reasoning in the algebra classroom. Published Master Thesis. (UMI No: 1431298).
  • Nair, A. and Pool, P. (1991). Mathematics methods: A resource book for primary school teachers. London: Macmillan Education Ltd.
  • National Council of Teachers of Mathematics (NCTM) (2000). Standarts for school mathematics. Reston, VA: NCTM
  • Norris, S., and Phillips, L. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87, 224-240.
  • Özgül, İ. and İncikabı, L. (2017). Prospective teachers’ representations for teaching note values: An analysis in the context of mathematics and music. Journal of education and training studies, 5(11), 129-140.
  • Pape, S. J., Bell, J. and Yetkin, I. E. (2003). Developing mathematical thinking and self-regulated learning: A teaching experiment in a seventh-grade mathematics classroom. Educational studies in mathematics, 53, 179-202.
  • Pektaş, M., İncikabı, L. and Yaz, Ö. V. (2015). An Analysis of middle school science textbooks in terms of TIMSS program framework. Adıyaman üniversitesi eğitim bilimleri dergisi, 5(1), 29-48.
  • Pektas, M. and Kurnaz, M. A. (2013). Difficulties of science teacher candidates in the articulation of transitions between table, graphical and pictorial representations. The international journal of social sciences, 18(1), 160-167.
  • Prain, V. and Tytler, R. (2012). Learning through constructing representations in science: A framework of representational construction affordances, International journal of science education, 34(17), 2751-2773.
  • Prain, V. and Waldrip, B. (2006). An exploratory study of teachers’ and students’ use of multi‐modal representations of concepts in primary science. International journal of science education, 28 (15), 1843-1866.
  • Prain, V. and Waldrip, B. (2010). Representing science literacies: An introduction. Research in science education, 40, 1-3.
  • Resnick, L. B. and Ford, W. W. (1981). The psychology of mathematics for instruction. Lawrence Erlbaum Associates.
  • Sankey, M., Birch, D. and Gardiner, M. (2010). Engaging students through multimodal learning environments: The journey continues. İçinde Steel, C.H., Keppell, M.J., Gerbic, P. and Housego, S. (Eds.), Curriculum, technology and transformation for an unknown future. Proceedings ascilite Sydney 2010 (pp.852-863).
  • Schmidt, W. H., McKnight, C. C., Houang, R. T., Wang, H., Wiley, D. E., Cogan, L. S., et al. (2001). Why schools matter: a cross-national comparison of curriculum and learning. San Francisco: Jossey-Bass.
  • Sert, Ö. (2007). Eighth grade students’ skills ın translating among different representations of algebraic concepts. Yüksek Lisans Tezi. Middle East Technical University, Ankara.
  • Spiro, R. J. and Jehng, J. C. (1990). Cognitive flexibility and hypertext: Theory and technology for the nonlinear and multidimensional traversal of complex subject matters. İçinde Nix, D. and Spiro, R. J. (Eds.), Cognition, education, and multimedia: Exploring ideas in high technology (pp. 163-205). Hillsdale, NJ: Erlbaum.
  • Törnroos, J. (2005). Mathematics textbooks, opportunity to learn and student achievement. Studies in educational evaluation. 31(4), 315-327.
  • Treagust, D., Chittelborough, G. and Mamiala, T. (2003). Students’ understanding of the role of scientific models in learning science. International journal of science education, 24(4), 357-368.
  • Tsui, C.-Y. and Treagust, D. F. (2003). Genetics reasoning with multiple external representations. Research in science education, 33(1), 111–135.
  • Van der Meij, J. and De Jong, T. (2006). Supporting students’ learning with multiple representations in a dynamic simulation-based learning environment. Learning and instruction, 16(3), 199–212.
  • Waldrip, B., Prain, V. and Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in science education, 40(1), 65–80.
  • Wu, H-K and Puntambekar, S. (2012). Pedagogical affordances of multiple external representations in scientific processes. Journal of science and educational technology, 21, 754–767.
  • Yerushalmy, M. and Schwartz, J. L. (1993). Seizing the opportunity to make algebra mathematically and pedagogically interesting. İçinde Romberg, A., Fennema, E. and Carpenter, T. P. (Eds.), Integrating research on the graphical representation of functions (pp. 41-68). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Zhu, Y. and Fan, L. (2004). An analysis of the representation of problem types in Chinese and US mathematics textbooks. Paper accepted for ICME-10 Discussion Group 14, 4-11 July: Copenhagen, Denmark
There are 53 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Semahat İncikabi This is me

Abdullah Çağrı Biber This is me

Publication Date August 1, 2017
Published in Issue Year 2017 Volume: 18 Issue: 3

Cite

APA İncikabi, S., & Biber, A. Ç. (2017). ORTAOKUL MATEMATİK DERS KİTAPLARINDA YER ALAN TEMSİLLERİN ÖĞRENME ALANLARINA VE SINIFLARA GÖRE İNCELENMESİ. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 18(3), 115-133.

2562219122   19121   19116   19117     19118       19119       19120     19124