BibTex RIS Cite

BİLİMİN DOĞASINI DEĞERLENDİRMEK İÇİN KAVRAM HARİTALARININ KULLANIMI ÜZERİNE BİR ÖZ-İNCELEME ÇALIŞMASI

Year 2010, Volume: 11 Issue: 4, 223 - 241, 01.11.2010

Abstract

Bu çalışma bilimin doğasını öğretmek üzere kendi pedagojik alan bilgimizi incelediğimiz ve geliştirdiğimiz bir öz-inceleme self-study çalışmasıdır. Bu çalışmada bir ilköğretim fen öğretimi yöntemleri dersinde fen bilgisi öğretmen adaylarının bilimin doğası ile ilgili anlayışlarını değerlendirmek üzere kullanılan kavram haritalarının iki farklı kullanım şeklini keşfettik. Katılımcıları iki gruba ayırdık. 1. Gruba kavram haritalarını oluştururken bilimin doğasının yönlerini başlangıç noktası olarak almaları, 2. gruba isekendi “bilim” kavramlarını oluşturmaları söylendi. Çalışma sonunda bulgular 1. grupta yer alan katılımcılara verilen bilimin doğası yönlerinin bağlantıları kurmakta onların işini zorlaştırdığını gösterdi. Diğer yandan, 2. grup ilişkili kelimeleri bulmakta zorluk çekti. Bu bulgulara dayanarak her iki kavram haritası oluşturma yönteminin farklı değerlendirme amaçlarıyla kullanılabileceği ve bilimin doğası öğretiminin farklı aşamalarında işe yarar olduğunu söyleyebiliriz.

References

  • Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 32(4), 417-436.
  • Abd-El-Khalick, F. & Lederman, N.G. (2000). Improving science teachers‟ conceptions of the nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665-701.
  • American Association for the Advancement of Science [AAAS]. (1990). Science for all Americans: Project 2061. New York, NY: Oxford University Press.
  • Borda, E.J., Burgess, D. J., Plog, C. J., DeKalb, N.C., & Luce, M. M. (2009). Concept maps as tools for assessing students‟ epistemologies of science. Electronic Journal http://ejse.southwestern.edu Education, 13(2). Retrieved from
  • Chen, S. (2006). Development of an instrument to assess views on nature of science and attitudes toward teaching science. Science Education, 90(5), 803-819.
  • De Vos, W., & Reiding, J. (1999). Public understanding of science as a separate subject in secondary schools in the Netherlands. International Journal of Science Education, 21, 711 - 719.
  • Dinkelman, T. (2003). Self-study in teacher education: A means and ends tool for promoting reflective teaching. Journal of Teacher Education, 54(1), 6-18.
  • Elby, A., & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science Education, 85, 554-567
  • Hanuscin, D., Lee, M. H., & Akerson, V. L. (2010). Elementary teachers‟ pedagogical content knowledge for teaching the nature of science. Science Education- Early View. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/sce.20404/pdf
  • Hodson, D. (1992). Assessment of practical work. Science & Education, 1(2) 115-144.
  • Irez, S. (2006). Are we prepared? An assessment of preservice science teacher educators‟ beliefs about nature of science. Science teacher education, 90, 1113-1143.
  • Kind, V. (2009). Pedagogical content knowledge in science education: perspectives and potential for progress. Studies in Science Education, 45(2), 169-204.
  • LaBoskey, V. K. (2004). The methodology of self-study and its theoretical underpinnings. In J. Loughran, M. L. Hamilton, V. K. LaBoskey & T. Russell (Eds.), International handbook of self-study of teaching and teacher education practices (Vol. 12, pp. 817-869). Netherlands: Springer.
  • Lacy, J., & Hanuscin, D. (2010, April). Developing PCK for NOS through self-study: Strategies for probing students' ideas about subjectivity in science. Paper presented at the annual meeting of the National Association for Research in Science Teaching. Philadelphia, PA.
  • Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831-879). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497-521.
  • Lederman, N., Schwartz, R., Abd-El-Khalick, F., & Bell, R. L. (2001). Preservice teachers‟ understanding and teaching of nature of science: An intervention study. Canadian Journal of Science, Mathematics, and Technology Education, 1, 135-160.
  • Loughran, J. (2007). Researching teacher education practices: Responding to the challenges, demands and expectations of self-study. Journal of Teacher Education, 58(1), 12-20.
  • Loughran, J., Berry, A., & Mulhall, P. (2006). Understanding and developing science teachers' pedagogical content knowledge. Rotterdam, The Netherlands: Sense Publishers.
  • Loughran, J., Mulhall, P., & Berry, A. (2004). Ub search of pedagogical content knowledge in science: Developing ways of articulating and documenting professional practice. Journal of Research on Science Teaching, 41, 370-391.
  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N.G. Lederman (Eds.), Examining pedagogical content knowledge: The constructs and its implications for science education (pp. 95-132). Boston, MA: Kluwer.
  • National Research Council [NRC]. (1996). National science education standards. Washington, D.C.: National Academic Press.
  • Novak, J.D. (1998). Learning, creating, and using knowledge: The use of concept maps as facilitative tools in school and corporations. Mahwah, NJ: Lawrence Erlbaum.
  • Novak, J.D. & Gowin, D. (1984). Learning how to learn. New York, NY: Cambridge University Press.
  • Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1‐22.
  • Shulman, L. (2004). The wisdom of practice: Essays on teaching, learning, and learning to teach. San Francisco: Jossey-Bass.
  • Spector, B., Strong, P., & La Porta, T. (1998). Teaching nature of science as an element of science, technology, and society. In: W.F. McComas (Ed.), The nature of science education rationale and strategies (pp. 267-276). Dodrecht, The Netherlands: Kluwer.
  • Tuan, H.-L., Jeng, B.-Y., Whang, L.-J., & Kaou, R.-C. (1995, April). A case study of chemistry teachers’ pedagogical content knowledge development. Paper presented at the annual meeting of the National Association for Research on Science Teaching, San Francisco, CA.

A Self-Study of the Use of Concept Mapping to Assess NOS

Year 2010, Volume: 11 Issue: 4, 223 - 241, 01.11.2010

Abstract

We undertook a self study to examine and develop our pedagogical content knowledge for teaching the nature of science. We explored two different uses of concept mapping to assess preservice teachers‟ ideas about the nature of science NOS in an elementary science methods course. The class was divided into two groups. Group 1 was provided with aspects of NOS as starter concepts for their maps, while Group 2 was asked to develop their own concepts related to “science”. We found that being given the NOS aspects constrained Group 1‟s ability to expand the connection of the main concept with other related words. On the other hand, Group 2 had difficulty moving beyond brainstorming related concepts. Based on this, we suggest that these two methods for concept mapping can be best used for different assessment purposes and at different points in NOS instruction

References

  • Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 32(4), 417-436.
  • Abd-El-Khalick, F. & Lederman, N.G. (2000). Improving science teachers‟ conceptions of the nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665-701.
  • American Association for the Advancement of Science [AAAS]. (1990). Science for all Americans: Project 2061. New York, NY: Oxford University Press.
  • Borda, E.J., Burgess, D. J., Plog, C. J., DeKalb, N.C., & Luce, M. M. (2009). Concept maps as tools for assessing students‟ epistemologies of science. Electronic Journal http://ejse.southwestern.edu Education, 13(2). Retrieved from
  • Chen, S. (2006). Development of an instrument to assess views on nature of science and attitudes toward teaching science. Science Education, 90(5), 803-819.
  • De Vos, W., & Reiding, J. (1999). Public understanding of science as a separate subject in secondary schools in the Netherlands. International Journal of Science Education, 21, 711 - 719.
  • Dinkelman, T. (2003). Self-study in teacher education: A means and ends tool for promoting reflective teaching. Journal of Teacher Education, 54(1), 6-18.
  • Elby, A., & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science Education, 85, 554-567
  • Hanuscin, D., Lee, M. H., & Akerson, V. L. (2010). Elementary teachers‟ pedagogical content knowledge for teaching the nature of science. Science Education- Early View. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/sce.20404/pdf
  • Hodson, D. (1992). Assessment of practical work. Science & Education, 1(2) 115-144.
  • Irez, S. (2006). Are we prepared? An assessment of preservice science teacher educators‟ beliefs about nature of science. Science teacher education, 90, 1113-1143.
  • Kind, V. (2009). Pedagogical content knowledge in science education: perspectives and potential for progress. Studies in Science Education, 45(2), 169-204.
  • LaBoskey, V. K. (2004). The methodology of self-study and its theoretical underpinnings. In J. Loughran, M. L. Hamilton, V. K. LaBoskey & T. Russell (Eds.), International handbook of self-study of teaching and teacher education practices (Vol. 12, pp. 817-869). Netherlands: Springer.
  • Lacy, J., & Hanuscin, D. (2010, April). Developing PCK for NOS through self-study: Strategies for probing students' ideas about subjectivity in science. Paper presented at the annual meeting of the National Association for Research in Science Teaching. Philadelphia, PA.
  • Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831-879). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497-521.
  • Lederman, N., Schwartz, R., Abd-El-Khalick, F., & Bell, R. L. (2001). Preservice teachers‟ understanding and teaching of nature of science: An intervention study. Canadian Journal of Science, Mathematics, and Technology Education, 1, 135-160.
  • Loughran, J. (2007). Researching teacher education practices: Responding to the challenges, demands and expectations of self-study. Journal of Teacher Education, 58(1), 12-20.
  • Loughran, J., Berry, A., & Mulhall, P. (2006). Understanding and developing science teachers' pedagogical content knowledge. Rotterdam, The Netherlands: Sense Publishers.
  • Loughran, J., Mulhall, P., & Berry, A. (2004). Ub search of pedagogical content knowledge in science: Developing ways of articulating and documenting professional practice. Journal of Research on Science Teaching, 41, 370-391.
  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N.G. Lederman (Eds.), Examining pedagogical content knowledge: The constructs and its implications for science education (pp. 95-132). Boston, MA: Kluwer.
  • National Research Council [NRC]. (1996). National science education standards. Washington, D.C.: National Academic Press.
  • Novak, J.D. (1998). Learning, creating, and using knowledge: The use of concept maps as facilitative tools in school and corporations. Mahwah, NJ: Lawrence Erlbaum.
  • Novak, J.D. & Gowin, D. (1984). Learning how to learn. New York, NY: Cambridge University Press.
  • Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1‐22.
  • Shulman, L. (2004). The wisdom of practice: Essays on teaching, learning, and learning to teach. San Francisco: Jossey-Bass.
  • Spector, B., Strong, P., & La Porta, T. (1998). Teaching nature of science as an element of science, technology, and society. In: W.F. McComas (Ed.), The nature of science education rationale and strategies (pp. 267-276). Dodrecht, The Netherlands: Kluwer.
  • Tuan, H.-L., Jeng, B.-Y., Whang, L.-J., & Kaou, R.-C. (1995, April). A case study of chemistry teachers’ pedagogical content knowledge development. Paper presented at the annual meeting of the National Association for Research on Science Teaching, San Francisco, CA.
There are 28 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Dominike Merle-johnson This is me

Nattida Promyod This is me

Ya-wen Cheng This is me

Deborah Hanuscın This is me

Publication Date November 1, 2010
Published in Issue Year 2010 Volume: 11 Issue: 4

Cite

APA Merle-johnson, D., Promyod, N., Cheng, Y.-w., Hanuscın, D. (2010). BİLİMİN DOĞASINI DEĞERLENDİRMEK İÇİN KAVRAM HARİTALARININ KULLANIMI ÜZERİNE BİR ÖZ-İNCELEME ÇALIŞMASI. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 11(4), 223-241.

2562219122   19121   19116   19117     19118       19119       19120     19124