Research Article
BibTex RIS Cite

Fen Bilgisi Öğretmen Adaylarının Sürdürülebilirlik Bağlamında Sanal Gerçeklik Benimsemelerinin İncelenmesi

Year 2025, Volume: 26 Issue: 3, 631 - 659, 30.09.2025
https://doi.org/10.29299/kefad.1578928

Abstract

Bu çalışma, fen bilgisi öğretmen adaylarının sürdürülebilir kalkınma konularını öğretimde Sanal Gerçeklik teknolojisini kullanma niyetlerini etkileyen faktörleri, E-Öğrenme için Genişletilmiş Genel Teknoloji Kabul Modeli’ni (GETAMEL) temel alarak incelemektedir. Araştırmada veri toplama ölçekler yardımıyla gerçekleştirilmiş ve elde edilen veriler Yapısal Eşitlik Modellemesi yöntemi ile analiz edilmiştir. 480 fen bilgisi öğretmen adayından elde edilen bulgulara göre, öznel normlar, algılanan hoşnutluk, deneyim, kaygı ve öz-yeterlilik, sanal gerçeklik teknolojisinin algılanan faydası ve kullanım kolaylığı üzerinde anlamlı bir etkiye sahiptir. Algılanan kullanım kolaylığı ve algılanan faydanın, öğretmen adaylarının tutumları üzerinde doğrudan bir etkisi olduğu saptanmış ve bu tutumların, sanal gerçeklik teknolojisinin benimsenmesi yönündeki niyetleri güçlü bir biçimde öngördüğü görülmüştür. Bulgular, teknolojik kabul süreçlerinin çok boyutlu yapısına işaret ederek bilişsel, duygusal ve sosyal faktörlerin etkileşimsel dinamiklerine vurgu yapmaktadır. Araştırmanın uygulamaya yönelik önerileri arasında, destekleyici öğrenme ortamlarının oluşturulması, öğretmen adaylarına deneyim kazandıracak uygulamalı çalışmalar sunulması, kaygının azaltılması ve sanal gerçeklik teknolojisinin pedagojik yararlarının ön plana çıkarılması yer almaktadır. Bu bulgular, teknoloji kabul modellerine ilişkin kuramsal bilgi birikimine katkı sağlamakta ve öğretmen eğitimi programlarında sanal gerçeklik entegrasyonunu artırmaya yönelik stratejik öneriler sunmaktadır.

References

  • Abd-Elaty, I., Kuriqi, A. & Shahawy, A. E. (2022). Environmental rethinking of wastewater drains to manage environmental pollution and alleviate water scarcity. Natural Hazards, 110(3), 2353-2380.
  • Abdullah, F. & Ward, R. (2016). Developing a general extended technology acceptance model for E-Learning (GETAMEL) by analysing commonly used external factors. Computers in Human Behavior, 56, 238–256.
  • Abdullah, F., Ward, R., & Ahmed, E. (2016). Investigating the influence of the most commonly used external variables of TAM on students’ Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of e-portfolios. Computers in Human Behavior, 63, 75-90.
  • Agarwal, R. & Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 24(4) 665–694.
  • Ahmad, M., Muslija, A., & Satrovic, E. (2021). Does economic prosperity lead to environmental sustainability in developing economies? Environmental Kuznets curve theory. Environmental Science and Pollution Research, 28(18), 22588-22601. https://doi.org/10.1007/s11356-020-12276-9
  • Ajzen, I. (1991). The Theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179-211.
  • Alvarez, L., Ortoleva, G., Widmer, D. S., Fritz, M., Bugmann, J., Boéchat-Heer, S. & Ramillon, C. (2024). Future teachers’ beliefs about generative AI. Assessing technology acceptance as students or as aspiring professionals. Journal of Technology and Teacher Education, 32(3), 383-408.
  • Araiza-Alba, P., Keane, T. & Kaufman, J. (2022). Are we ready for virtual reality in K–12 classrooms?. Technology, Pedagogy, and Education, 31(4), 471-491. https://doi.org/10.1080/1475939X.2022.2033307
  • Ardoin, N. M., Bowers, A. W. & Gaillard, E. (2020). Environmental education outcomes for conservation: A systematic review. Biological Conservation, 241, 108224.
  • Ateş, H. (2020). Merging theory of planned behavior and value identity personal norm model to explain pro-environmental behaviors. Sustainable Production, and Consumption, 24, 169-180. https://doi.org/10.1016/j.spc.2020.07.006
  • Ateş, H. (2021). Understanding students’ and science educators’ eco-labeled food purchase behaviors: Extension of the theory of planned behavior with self-identity, personal norm, willingness to pay and eco-label knowledge. Ecology of Food and Nutrition, 60(4), 454-472. https://doi.org/10.1080/03670244.2020.1865339
  • Ateş, H. & Garzón, J. (2022). Drivers of teachers' intentions to use mobile applications to teach science. Education and Information Technologies, 27, 2521-2542.
  • Ateş, H. & Garzón, J. (2023). An integrated model for examining teachers’ intentions to use augmented reality in science courses. Education and Information Technologies, 28(2), 1299-1321.
  • Ateş, H. & Kölemen, C. Ş. (2025). Integrating theories for insight: an amalgamated model for gamified virtual reality adoption by science teachers. Education and Information Technologies, 30, 2123–2153.
  • Ateş, H., Garzón, J. & Lampropoulos, G. (2024). Evaluating science teachers’ flipped learning readiness: a GETAMEL approach test. Interactive Learning Environments, 32(10), 6283–6300.
  • Ateş, H., & Gündüzalp, C. (2025). The convergence of GETAMEL and protection motivation theory: A study on augmented reality-based gamification adoption among science teachers. Education and Information Technologies, 1-43.
  • Azadi, Y., Yazdanpanah, M. & Mahmoudi, H. (2019). Understanding smallholder farmers’ adaptation behaviors through climate change beliefs, risk perception, trust, and psychological distance: Evidence from wheat growers in Iran. Journal of Environmental Management, 250, 1-25.
  • Bandura, A. (1982). Self-Efficacy mechanism in human agency. American Psychologist, 37(2), 122–147.
  • Birleşmiş Milletler. (2024). Around 2.5 billion more people will be living in cities by 2050, projects new UN report. https://www.un.org/en/desa/around-25-billion-more-people-will-be-living-cities-2050-projects-new-un-report
  • Birleşmiş Milletler Çevre Programı. (2007). UNEP 2007 yıllık rapor (Yayın No. 2007). https://wedocs.unep.org/handle/20.500.11822/7647
  • Boyes, E. & Stanisstreet, M. (2012). Environmental education for behaviour change: Which actions should be targeted?. International Journal of Science Education, 34(10), 1591-1614. https://doi.org/10.1080/09500693.2011.584079
  • Casas Jr, E. V., Pormon, M. M., Manus, J. J. & Lejano, R. P. (2021). Relationality and resilience: Environmental education in a time of pandemic and climate crisis. The Journal of Environmental Education, 52(5), 314-324.
  • Chen, Y. L. (2016). The effects of virtual reality learning environment on student cognitive and linguistic development. Asia-Pacific Education Researcher, 25(4), 637-646.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MISQuarterly, 13(3) 319–340.
  • Doleck, T., Bazelais, P. & Lemay, D. J. (2018). Is a general extended technology acceptance model for e-learning generalizable? Knowledge Management & E-Learning: An International Journal, 10(2), 133–147.
  • Dowd, K. & Burke, K. J. (2013). The influence of ethical values and food choice motivations on intentions to purchase sustainably sourced foods. Appetite, 69, 137-144. https://doi.org/10.1016/j.appet.2013.05.024
  • Durodolu, O. (2016). Technology acceptance model as a predictor of using information system to acquire information literacy skills. Library Philosophy & Practice.
  • Edgerton, E., Romice, O. & Spencer, C. (2021). Environmental psychology: Putting research into practice. Cambridge Scholars Publishing.
  • Eurostat. (2014). Final energy consumption by sector. Eurostat - European Commission. http://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-5/assessment
  • Fan, S., Zhang, Y., Fan, J., He, Z. & Chen, Y. (2010, 23-25 Nisan). The application of virtual reality in environmental education: model design and course construction. [Bildiri sunumu]. 2010 International Conference on Biomedical Engineering and Computer Science, Wuhan, Çin.
  • Feroz, A. K., Zo, H. & Chiravuri, A. (2021). Digital transformation and environmental sustainability: A review and research agenda. Sustainability, 13(3), 1-20.
  • Fraser, R. & Jamieson, G. (2003). Community environmental education: challenges within the biosphere reserve concept. Prospects, 33(3), 293-302.
  • Freina, L. & Ott, M. (2015, 23-24 Nisan). A literature review on immersive virtual reality in education: State of the art and perspectives. [Bildiri sunumu]. The 11th International Scientific Conference e-Learning and Software for Education, Bükreş, Romanya.
  • Hanif, A., Jamal, F. Q. & Imran, M. (2018). Extending the technology acceptance model for use of E-learning systems bydigital learners. IEEE Access, 6, 73395–73404.
  • Hükümetlerarası İklim Değişikliği Paneli (2021). Climate Change 2021 The physical science basis working group i contribution to the sixth assessment report of the intergovernmental panel on climate change. Singer
  • Issock, P. B. I., Mpinganjira, M. & Roberts-Lombard, M. (2021). Trying to recycle domestic waste and feelings of guilt: a moderated mediation model applied to South African households. Sustainable Production and Consumption, 27, 1286-1296. https://doi.org/10.1016/j.spc.2021.03.003
  • Ke, F., Lee, S. & Xu, X. (2016). Teaching training in a mixed-reality integrated learning environment. Computers in Human Behavior, 62, 212-220.
  • Kemp, A., Palmer, E. & Strelan, P. (2019). A taxonomy of factors affecting attitudes towards educational technologies for use with technology acceptance models. British Journal of Educational Technology, 50(5), 2394–2413.
  • Kim, J., Kim, K. & Kim, W. (2022). Impact of Immersive Virtual Reality Content Using 360-degree Videos in Undergraduate Education. IEEE Transactions on Learning Technologies, 15(1), 137-149. https://doi.org/10.1109/TLT.2022.3157250
  • Kirikkaleli, D. & Adebayo, T. S. (2021). Do renewable energy consumption and financial development matter for environmental sustainability? New global evidence. Sustainable Development, 29(4), 583-594.
  • Koutsoukos, M., Fragoulis, I. & Valkanos, E. (2015). Connection of environmental education with application of experiential teaching methods: a case study from Greece. International Education Studies, 8(4), 23-28. http://dx.doi.org/10.5539/ies.v8n4p23
  • Lacroix, K., Gifford, R. & Rush, J. (2020). Climate change beliefs shape the interpretation of forest fire events. Climatic Change, 159(1), 103-120. https://doi.org/10.1007/s10584-019-02584-6
  • Lange, F. & Dewitte, S. (2019). Measuring pro-environmental behavior: Review and recommendations. Journal of Environmental Psychology, 63, 92-100.
  • Lehman, P. K., & Geller, E. S. (2004). Behavior analysis and environmental protection: Accomplishments and potential for more. Behavior and Social Issues, 13(1), 13-33.
  • Liesa-Orús, M., Latorre-Cosculluela, C., Sierra-Sánchez, V. & Vázquez-Toledo, S. (2023). Links between ease of use, perceived usefulness and attitudes towards technology in older people in university: A structural equation modelling approach. Education and Information Technologies, 28(3), 2419-2436.
  • Littledyke, M., Lakin, L. & Ross, K. (2013). Science knowledge and the environment: A guide for students and teachers in primary education. Routledge.
  • Markowitz, D. M., Laha, R., Perone, B. P., Pea, R. D. & Bailenson, J. N. (2018). Immersive virtual reality field trips facilitate learning about climate change. Frontiers in Psychology, 9, 2364. https://doi.org/10.3389/fpsyg.2018.02364
  • Ngo, C. C., Poortvliet, P. M. & Feindt, P. H. (2020). Drivers of flood and climate change risk perceptions and intention to adapt: an explorative survey in coastal and delta Vietnam. Journal of Risk Research, 23(4), 424-446. https://doi.org/10.1080/13669877.2019.1591484
  • Nielsen, K. S., Cologna, V., Lange, F., Brick, C. & Stern, P. C. (2021). The case for impact-focused environmental psychology. Journal of Environmental Psychology, 74. https://osf.io/preprints/psyarxiv/w39c5
  • Norton, T. A., Parker, S. L., Zacher, H., & Ashkanasy, N. M. (2015). Employee green behavior: A theoretical framework, multilevel review, and future research agenda. Organization & Environment, 28(1), 103-125.
  • Persky, S., & McBride, C. M. (2009). Immersive virtual environment technology: A promising tool for future social and behavioral genomics research and practice. Health Communication, 24(8), 677-682.
  • Revythi, A. & Tselios, N. (2019). Extension of technology acceptance model by using system usability scale to assess behavioral intention to use e-learning. Education and Information Technologies, 24, 2341-2355.
  • Ricart, S., Villar-Navascués, R. A., Hernández-Hernández, M., Rico-Amorós, A. M., Olcina-Cantos, J. & Moltó-Mantero, E. (2021). Extending natural limits to address water scarcity? The role of non-conventional water fluxes in climate change adaptation capacity: A review. Sustainability, 13(5), 2473.
  • Ronaghi, M. H. (2023). The effect of virtual reality technology and education on sustainable behavior: A comparative quasi-experimental study. Interactive Technology and Smart Education, 20(4), 475-492.
  • Saif, N., Khan, S. U., Shaheen, I., ALotaibi, F. A., Alnfiai, M. M. & Arif, M. (2024). Chat-GPT; validating Technology Acceptance Model (TAM) in education sector via ubiquitous learning mechanism. Computers in Human Behavior, 154, 108097.
  • Sancar, R., Atal Demirbacak, D. ve Ateş, H. (2022). Sürdürülebilir çevre eğitiminde sanal gerçeklik teknolojisinin kullanımı. A. Şimşek ve S. Fiş Erümit (Ed.), Pedagojiden uygulamaya yansımalar: teknolojinin öğretim ortamlarında kullanımı (1. baskı, s. 199-222). Pegem Akademi.
  • Sancar, R., Atal Demirbacak, D. & Ateş, H. (2023). Designing context-rich learning by extending reality. In J. Braun & G. Trajkovski (Ed.), The use of virtual reality in education for sustainable development (pp. 298-318). IGI Global.
  • Savari, M., Zhoolideh, M. & Khosravipour, B. (2023). Explaining pro-environmental behavior of farmers: A case of rural Iran. Current Psychology, 42, 7752–7770. https://10.1007/s12144-021-02093-9
  • Scurati, G. W. & Ferrise, F. (2020). Looking into a future which hopefully will not become reality: How computer graphics can impact our behavior-A study of the potential of VR. IEEE Computer Graphics and Applications, 40(5), 82-88. https://doi.org/10.1109/MCG.2020.3004276
  • Smith, B., Caputi, P., Crittenden, N., Jayasuriya, R. & Rawstorne, P. (1999). A review of the construct of computer experi-ence. Computers in Human Behavior, 15(2), 227–242.
  • Sonnett, J. (2022). Climate change risks and global warming dangers: a field analysis of online US news media. Environmental Sociology, 8(1), 41-51. https://doi.org/10.1080/23251042.2021.1960098
  • Strzelecki, A., Cicha, K., Rizun, M. & Rutecka, P. (2022). Using a general extended technology acceptance model for e-learning (GETAMEL). A literature review of empirical studies. In R. A. Buchmann, G. C. Silaghi, D. Bufnea, V. Niculescu, G. Czibula, C. Barry, M. Lang, H. Linger & C. Schneider (Ed.), Information systems development: Artificial intelligence for information systems development and operations (ISD2022 proceedings). Risoprint.
  • Thøgersen, J. (2009). The motivational roots of norms for environmentally responsible behavior. Basic and Applied Social Psychology, 31(4), 348-362. https://doi.org/10.1080/01973530903317144
  • Trevors, J. T. (2007). Environmental education. Water, Air, and Soil Pollution, 180(1), 1-1.
  • Tukker, A. & Jansen, B. (2006). Environmental impacts of products: A detailed review of studies. Journal of Industrial Ecology, 10(3), 159-182.
  • Venkatesh, V., Morris, M. G., Davis, G. B. & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
  • Ververidis, D., Migkotzidis, P., Nikolaidis, E., Anastasovitis, E., Chalikias, A. P., Nikolopoulos, S. & Kompatsiaris, I. (2021). An authoring tool for democratizing the creation of high-quality VR experiences. Virtual Reality, 1-20. https://doi.org/10.1007/s10055-021-00541-2
  • Wals, A. E., Brody, M., Dillon, J. & Stevenson, R. B. (2014). Convergence between science and environmental education. Science, 344(6184), 583-584.
  • Wynes, S., & Nicholas, K. A. (2017). The climate mitigation gap: education and government recommendations miss the most effective individual actions. Environmental Research Letters, 12(7), 074024.
  • Yulianto, D. & Setyaningsih, E. (2021). To use it or reject it? EFL students’ perceptions and constraints of using e-learning during COVID-19 pandemic. ICOTEL Proceeding MPBING, 2(1), 146-153.
  • Zeiske, N., Venhoeven, L., Steg, L. & van der Werff, E. (2021). The normative route to a sustainable future: Examining children’s environmental values, identity, and personal norms to conserve energy. Environment and Behavior, 53(10), 1118-1139. https://doi.org/10.1177/0013916520950266
  • Zhai, M. & Wolff, H. (2021). Air pollution and urban road transport: Evidence from the world’s largest low-emission zone in London. Environmental Economics and Policy Studies, 23(4), 721-748.
  • Zhang, G., Yao, T., Xie, H., Yang, K., Zhu, L., Shum, C. K., Bolch, T., Yi, S., Allen, S., Jiang, L., Chen, W.& Ke, C. (2020). Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Science Reviews, 208, 1-22. http://dx.doi.org/10.1016/j.earscirev.2020.103269
  • Zhang, P. & Yang, H. (2024). The GETAMEL Model: Features of the adaptation of teachers in the transition to on-line learning. International Journal of Human–Computer Interaction, 1-13.
  • Zhang, X., Luo, L. & Skitmore, M., (2015). Household carbon emission research: an analytical review of measurement, influencing factors and mitigation prospects. Journal of Cleaner Production, 103, 873-883. https://doi.org/10.1016/j.jclepro.2015.04.024

Exploring Pre-Service Science Teachers’ Adoption of Virtual Reality in Sustainability

Year 2025, Volume: 26 Issue: 3, 631 - 659, 30.09.2025
https://doi.org/10.29299/kefad.1578928

Abstract

This study investigates the factors influencing pre-service science teachers' intentions to integrate Virtual Reality (VR) technology in teaching sustainable development topics, utilizing the General Extended Technology Acceptance Model for E-Learning (GETAMEL). Data were collected from pre-service science teachers using self-reported surveys and analyzed through Structural Equation Modeling (SEM). Results from 480 pre-service science teachers indicate that subjective norms, perceived enjoyment, experience, anxiety, and self-efficacy significantly influence perceived usefulness and ease of use of VR technology. Perceived ease of use and perceived usefulness were found to significantly impact attitudes, which, in turn, strongly predicted teachers' intention to adopt VR in teaching. The findings highlight the multifaceted nature of technology acceptance, emphasizing the interplay of cognitive, emotional, and social factors. Practical implications suggest that fostering a supportive environment, providing hands-on experience, reducing anxiety, and emphasizing the pedagogical benefits of VR are essential strategies for promoting its adoption. These findings contribute to the theoretical understanding of technology acceptance models and offer practical recommendations for enhancing VR integration in teacher education programs.

References

  • Abd-Elaty, I., Kuriqi, A. & Shahawy, A. E. (2022). Environmental rethinking of wastewater drains to manage environmental pollution and alleviate water scarcity. Natural Hazards, 110(3), 2353-2380.
  • Abdullah, F. & Ward, R. (2016). Developing a general extended technology acceptance model for E-Learning (GETAMEL) by analysing commonly used external factors. Computers in Human Behavior, 56, 238–256.
  • Abdullah, F., Ward, R., & Ahmed, E. (2016). Investigating the influence of the most commonly used external variables of TAM on students’ Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of e-portfolios. Computers in Human Behavior, 63, 75-90.
  • Agarwal, R. & Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 24(4) 665–694.
  • Ahmad, M., Muslija, A., & Satrovic, E. (2021). Does economic prosperity lead to environmental sustainability in developing economies? Environmental Kuznets curve theory. Environmental Science and Pollution Research, 28(18), 22588-22601. https://doi.org/10.1007/s11356-020-12276-9
  • Ajzen, I. (1991). The Theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179-211.
  • Alvarez, L., Ortoleva, G., Widmer, D. S., Fritz, M., Bugmann, J., Boéchat-Heer, S. & Ramillon, C. (2024). Future teachers’ beliefs about generative AI. Assessing technology acceptance as students or as aspiring professionals. Journal of Technology and Teacher Education, 32(3), 383-408.
  • Araiza-Alba, P., Keane, T. & Kaufman, J. (2022). Are we ready for virtual reality in K–12 classrooms?. Technology, Pedagogy, and Education, 31(4), 471-491. https://doi.org/10.1080/1475939X.2022.2033307
  • Ardoin, N. M., Bowers, A. W. & Gaillard, E. (2020). Environmental education outcomes for conservation: A systematic review. Biological Conservation, 241, 108224.
  • Ateş, H. (2020). Merging theory of planned behavior and value identity personal norm model to explain pro-environmental behaviors. Sustainable Production, and Consumption, 24, 169-180. https://doi.org/10.1016/j.spc.2020.07.006
  • Ateş, H. (2021). Understanding students’ and science educators’ eco-labeled food purchase behaviors: Extension of the theory of planned behavior with self-identity, personal norm, willingness to pay and eco-label knowledge. Ecology of Food and Nutrition, 60(4), 454-472. https://doi.org/10.1080/03670244.2020.1865339
  • Ateş, H. & Garzón, J. (2022). Drivers of teachers' intentions to use mobile applications to teach science. Education and Information Technologies, 27, 2521-2542.
  • Ateş, H. & Garzón, J. (2023). An integrated model for examining teachers’ intentions to use augmented reality in science courses. Education and Information Technologies, 28(2), 1299-1321.
  • Ateş, H. & Kölemen, C. Ş. (2025). Integrating theories for insight: an amalgamated model for gamified virtual reality adoption by science teachers. Education and Information Technologies, 30, 2123–2153.
  • Ateş, H., Garzón, J. & Lampropoulos, G. (2024). Evaluating science teachers’ flipped learning readiness: a GETAMEL approach test. Interactive Learning Environments, 32(10), 6283–6300.
  • Ateş, H., & Gündüzalp, C. (2025). The convergence of GETAMEL and protection motivation theory: A study on augmented reality-based gamification adoption among science teachers. Education and Information Technologies, 1-43.
  • Azadi, Y., Yazdanpanah, M. & Mahmoudi, H. (2019). Understanding smallholder farmers’ adaptation behaviors through climate change beliefs, risk perception, trust, and psychological distance: Evidence from wheat growers in Iran. Journal of Environmental Management, 250, 1-25.
  • Bandura, A. (1982). Self-Efficacy mechanism in human agency. American Psychologist, 37(2), 122–147.
  • Birleşmiş Milletler. (2024). Around 2.5 billion more people will be living in cities by 2050, projects new UN report. https://www.un.org/en/desa/around-25-billion-more-people-will-be-living-cities-2050-projects-new-un-report
  • Birleşmiş Milletler Çevre Programı. (2007). UNEP 2007 yıllık rapor (Yayın No. 2007). https://wedocs.unep.org/handle/20.500.11822/7647
  • Boyes, E. & Stanisstreet, M. (2012). Environmental education for behaviour change: Which actions should be targeted?. International Journal of Science Education, 34(10), 1591-1614. https://doi.org/10.1080/09500693.2011.584079
  • Casas Jr, E. V., Pormon, M. M., Manus, J. J. & Lejano, R. P. (2021). Relationality and resilience: Environmental education in a time of pandemic and climate crisis. The Journal of Environmental Education, 52(5), 314-324.
  • Chen, Y. L. (2016). The effects of virtual reality learning environment on student cognitive and linguistic development. Asia-Pacific Education Researcher, 25(4), 637-646.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MISQuarterly, 13(3) 319–340.
  • Doleck, T., Bazelais, P. & Lemay, D. J. (2018). Is a general extended technology acceptance model for e-learning generalizable? Knowledge Management & E-Learning: An International Journal, 10(2), 133–147.
  • Dowd, K. & Burke, K. J. (2013). The influence of ethical values and food choice motivations on intentions to purchase sustainably sourced foods. Appetite, 69, 137-144. https://doi.org/10.1016/j.appet.2013.05.024
  • Durodolu, O. (2016). Technology acceptance model as a predictor of using information system to acquire information literacy skills. Library Philosophy & Practice.
  • Edgerton, E., Romice, O. & Spencer, C. (2021). Environmental psychology: Putting research into practice. Cambridge Scholars Publishing.
  • Eurostat. (2014). Final energy consumption by sector. Eurostat - European Commission. http://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-5/assessment
  • Fan, S., Zhang, Y., Fan, J., He, Z. & Chen, Y. (2010, 23-25 Nisan). The application of virtual reality in environmental education: model design and course construction. [Bildiri sunumu]. 2010 International Conference on Biomedical Engineering and Computer Science, Wuhan, Çin.
  • Feroz, A. K., Zo, H. & Chiravuri, A. (2021). Digital transformation and environmental sustainability: A review and research agenda. Sustainability, 13(3), 1-20.
  • Fraser, R. & Jamieson, G. (2003). Community environmental education: challenges within the biosphere reserve concept. Prospects, 33(3), 293-302.
  • Freina, L. & Ott, M. (2015, 23-24 Nisan). A literature review on immersive virtual reality in education: State of the art and perspectives. [Bildiri sunumu]. The 11th International Scientific Conference e-Learning and Software for Education, Bükreş, Romanya.
  • Hanif, A., Jamal, F. Q. & Imran, M. (2018). Extending the technology acceptance model for use of E-learning systems bydigital learners. IEEE Access, 6, 73395–73404.
  • Hükümetlerarası İklim Değişikliği Paneli (2021). Climate Change 2021 The physical science basis working group i contribution to the sixth assessment report of the intergovernmental panel on climate change. Singer
  • Issock, P. B. I., Mpinganjira, M. & Roberts-Lombard, M. (2021). Trying to recycle domestic waste and feelings of guilt: a moderated mediation model applied to South African households. Sustainable Production and Consumption, 27, 1286-1296. https://doi.org/10.1016/j.spc.2021.03.003
  • Ke, F., Lee, S. & Xu, X. (2016). Teaching training in a mixed-reality integrated learning environment. Computers in Human Behavior, 62, 212-220.
  • Kemp, A., Palmer, E. & Strelan, P. (2019). A taxonomy of factors affecting attitudes towards educational technologies for use with technology acceptance models. British Journal of Educational Technology, 50(5), 2394–2413.
  • Kim, J., Kim, K. & Kim, W. (2022). Impact of Immersive Virtual Reality Content Using 360-degree Videos in Undergraduate Education. IEEE Transactions on Learning Technologies, 15(1), 137-149. https://doi.org/10.1109/TLT.2022.3157250
  • Kirikkaleli, D. & Adebayo, T. S. (2021). Do renewable energy consumption and financial development matter for environmental sustainability? New global evidence. Sustainable Development, 29(4), 583-594.
  • Koutsoukos, M., Fragoulis, I. & Valkanos, E. (2015). Connection of environmental education with application of experiential teaching methods: a case study from Greece. International Education Studies, 8(4), 23-28. http://dx.doi.org/10.5539/ies.v8n4p23
  • Lacroix, K., Gifford, R. & Rush, J. (2020). Climate change beliefs shape the interpretation of forest fire events. Climatic Change, 159(1), 103-120. https://doi.org/10.1007/s10584-019-02584-6
  • Lange, F. & Dewitte, S. (2019). Measuring pro-environmental behavior: Review and recommendations. Journal of Environmental Psychology, 63, 92-100.
  • Lehman, P. K., & Geller, E. S. (2004). Behavior analysis and environmental protection: Accomplishments and potential for more. Behavior and Social Issues, 13(1), 13-33.
  • Liesa-Orús, M., Latorre-Cosculluela, C., Sierra-Sánchez, V. & Vázquez-Toledo, S. (2023). Links between ease of use, perceived usefulness and attitudes towards technology in older people in university: A structural equation modelling approach. Education and Information Technologies, 28(3), 2419-2436.
  • Littledyke, M., Lakin, L. & Ross, K. (2013). Science knowledge and the environment: A guide for students and teachers in primary education. Routledge.
  • Markowitz, D. M., Laha, R., Perone, B. P., Pea, R. D. & Bailenson, J. N. (2018). Immersive virtual reality field trips facilitate learning about climate change. Frontiers in Psychology, 9, 2364. https://doi.org/10.3389/fpsyg.2018.02364
  • Ngo, C. C., Poortvliet, P. M. & Feindt, P. H. (2020). Drivers of flood and climate change risk perceptions and intention to adapt: an explorative survey in coastal and delta Vietnam. Journal of Risk Research, 23(4), 424-446. https://doi.org/10.1080/13669877.2019.1591484
  • Nielsen, K. S., Cologna, V., Lange, F., Brick, C. & Stern, P. C. (2021). The case for impact-focused environmental psychology. Journal of Environmental Psychology, 74. https://osf.io/preprints/psyarxiv/w39c5
  • Norton, T. A., Parker, S. L., Zacher, H., & Ashkanasy, N. M. (2015). Employee green behavior: A theoretical framework, multilevel review, and future research agenda. Organization & Environment, 28(1), 103-125.
  • Persky, S., & McBride, C. M. (2009). Immersive virtual environment technology: A promising tool for future social and behavioral genomics research and practice. Health Communication, 24(8), 677-682.
  • Revythi, A. & Tselios, N. (2019). Extension of technology acceptance model by using system usability scale to assess behavioral intention to use e-learning. Education and Information Technologies, 24, 2341-2355.
  • Ricart, S., Villar-Navascués, R. A., Hernández-Hernández, M., Rico-Amorós, A. M., Olcina-Cantos, J. & Moltó-Mantero, E. (2021). Extending natural limits to address water scarcity? The role of non-conventional water fluxes in climate change adaptation capacity: A review. Sustainability, 13(5), 2473.
  • Ronaghi, M. H. (2023). The effect of virtual reality technology and education on sustainable behavior: A comparative quasi-experimental study. Interactive Technology and Smart Education, 20(4), 475-492.
  • Saif, N., Khan, S. U., Shaheen, I., ALotaibi, F. A., Alnfiai, M. M. & Arif, M. (2024). Chat-GPT; validating Technology Acceptance Model (TAM) in education sector via ubiquitous learning mechanism. Computers in Human Behavior, 154, 108097.
  • Sancar, R., Atal Demirbacak, D. ve Ateş, H. (2022). Sürdürülebilir çevre eğitiminde sanal gerçeklik teknolojisinin kullanımı. A. Şimşek ve S. Fiş Erümit (Ed.), Pedagojiden uygulamaya yansımalar: teknolojinin öğretim ortamlarında kullanımı (1. baskı, s. 199-222). Pegem Akademi.
  • Sancar, R., Atal Demirbacak, D. & Ateş, H. (2023). Designing context-rich learning by extending reality. In J. Braun & G. Trajkovski (Ed.), The use of virtual reality in education for sustainable development (pp. 298-318). IGI Global.
  • Savari, M., Zhoolideh, M. & Khosravipour, B. (2023). Explaining pro-environmental behavior of farmers: A case of rural Iran. Current Psychology, 42, 7752–7770. https://10.1007/s12144-021-02093-9
  • Scurati, G. W. & Ferrise, F. (2020). Looking into a future which hopefully will not become reality: How computer graphics can impact our behavior-A study of the potential of VR. IEEE Computer Graphics and Applications, 40(5), 82-88. https://doi.org/10.1109/MCG.2020.3004276
  • Smith, B., Caputi, P., Crittenden, N., Jayasuriya, R. & Rawstorne, P. (1999). A review of the construct of computer experi-ence. Computers in Human Behavior, 15(2), 227–242.
  • Sonnett, J. (2022). Climate change risks and global warming dangers: a field analysis of online US news media. Environmental Sociology, 8(1), 41-51. https://doi.org/10.1080/23251042.2021.1960098
  • Strzelecki, A., Cicha, K., Rizun, M. & Rutecka, P. (2022). Using a general extended technology acceptance model for e-learning (GETAMEL). A literature review of empirical studies. In R. A. Buchmann, G. C. Silaghi, D. Bufnea, V. Niculescu, G. Czibula, C. Barry, M. Lang, H. Linger & C. Schneider (Ed.), Information systems development: Artificial intelligence for information systems development and operations (ISD2022 proceedings). Risoprint.
  • Thøgersen, J. (2009). The motivational roots of norms for environmentally responsible behavior. Basic and Applied Social Psychology, 31(4), 348-362. https://doi.org/10.1080/01973530903317144
  • Trevors, J. T. (2007). Environmental education. Water, Air, and Soil Pollution, 180(1), 1-1.
  • Tukker, A. & Jansen, B. (2006). Environmental impacts of products: A detailed review of studies. Journal of Industrial Ecology, 10(3), 159-182.
  • Venkatesh, V., Morris, M. G., Davis, G. B. & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
  • Ververidis, D., Migkotzidis, P., Nikolaidis, E., Anastasovitis, E., Chalikias, A. P., Nikolopoulos, S. & Kompatsiaris, I. (2021). An authoring tool for democratizing the creation of high-quality VR experiences. Virtual Reality, 1-20. https://doi.org/10.1007/s10055-021-00541-2
  • Wals, A. E., Brody, M., Dillon, J. & Stevenson, R. B. (2014). Convergence between science and environmental education. Science, 344(6184), 583-584.
  • Wynes, S., & Nicholas, K. A. (2017). The climate mitigation gap: education and government recommendations miss the most effective individual actions. Environmental Research Letters, 12(7), 074024.
  • Yulianto, D. & Setyaningsih, E. (2021). To use it or reject it? EFL students’ perceptions and constraints of using e-learning during COVID-19 pandemic. ICOTEL Proceeding MPBING, 2(1), 146-153.
  • Zeiske, N., Venhoeven, L., Steg, L. & van der Werff, E. (2021). The normative route to a sustainable future: Examining children’s environmental values, identity, and personal norms to conserve energy. Environment and Behavior, 53(10), 1118-1139. https://doi.org/10.1177/0013916520950266
  • Zhai, M. & Wolff, H. (2021). Air pollution and urban road transport: Evidence from the world’s largest low-emission zone in London. Environmental Economics and Policy Studies, 23(4), 721-748.
  • Zhang, G., Yao, T., Xie, H., Yang, K., Zhu, L., Shum, C. K., Bolch, T., Yi, S., Allen, S., Jiang, L., Chen, W.& Ke, C. (2020). Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Science Reviews, 208, 1-22. http://dx.doi.org/10.1016/j.earscirev.2020.103269
  • Zhang, P. & Yang, H. (2024). The GETAMEL Model: Features of the adaptation of teachers in the transition to on-line learning. International Journal of Human–Computer Interaction, 1-13.
  • Zhang, X., Luo, L. & Skitmore, M., (2015). Household carbon emission research: an analytical review of measurement, influencing factors and mitigation prospects. Journal of Cleaner Production, 103, 873-883. https://doi.org/10.1016/j.jclepro.2015.04.024
There are 75 citations in total.

Details

Primary Language Turkish
Subjects Instructional Technologies, Science Education, Development of Environmental Education and Programs
Journal Section Research Articles
Authors

Yeşim Taktat Ateş 0000-0002-8161-2396

Murat Saraçoğlu 0000-0003-4027-9643

Publication Date September 30, 2025
Submission Date November 4, 2024
Acceptance Date March 28, 2025
Published in Issue Year 2025 Volume: 26 Issue: 3

Cite

APA Taktat Ateş, Y., & Saraçoğlu, M. (2025). Fen Bilgisi Öğretmen Adaylarının Sürdürülebilirlik Bağlamında Sanal Gerçeklik Benimsemelerinin İncelenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 26(3), 631-659. https://doi.org/10.29299/kefad.1578928