Research Article
BibTex RIS Cite

Investigating Prospective Middle School Mathematics Teachers’ Knowledge of Angle

Year 2019, , 949 - 958, 15.05.2019
https://doi.org/10.24106/kefdergi.807

Abstract

In this study, the
researchers investigated prospective middle school mathematics teachers’ knowledge
of angle. For this purpose, data was collected from 151 prospective middle
school teachers who were enrolled in a geometry course offered in the spring
semester in a university located in Southern Turkey. In data collection, the
participants were given an instrument in which they were asked to define and
draw fundamental geometric shapes. Within the scope of this paper the data involving
participants’ definitions and drawings of angle was qualitatively analyzed. The
findings indicated that in general the measure and interior region of angle
were identified in participants’ drawings and their definitions were in
parallel to their drawings. In many of the definitions, they defined angle as
the measure, region, area, or slope. Additionally, it was found out that the
mathematical language used in the definitions was problematic.

References

  • Adams, T. L. (2003). Reading mathematics: More than words can say. The Reading Teacher, 56, 786-795. doi: 10.2307/20205297
  • Aiken, L. R. (1972). Language factors in learning mathematics. Review of Educational Research, 42, 359-385. doi: 10.3102/00346543042003359
  • Allendoerfer, C. B. (1965). Angles, arcs, and Archimedes. The Mathematics Teacher, 58(2), 82-88.
  • Arshavsky, N. & Goldenberg, E.P. (2005). Perceptions of a quadrilateral in a dynamic environment. In D. Carraher, R. Nemirovksy, & A. Schliemann (Eds.) Journal for Research in Mathematics Education Monograph XIII: Medium and meaning: Video papers in mathematics education research. Reston, VA: National Council of Teachers of Mathematics.
  • Aslan, D., & Arnas, Y. A. (2007). Three‐to six‐year‐old children’s recognition of geometric shapes. International Journal of Early Years Education, 15(1), 83-104.
  • Aydın, İ., & Peken, M. (2009). Ortaöğretim geometri 1 ders kitabı. Ankara: Farklı Yayınevi.
  • Aydın, E, & Gündoğdu, L. (2016). Ortaokul Matematik 6 Ders kitabı, Ankara: Sevgi Yayınları.
  • Bahar, M., Ozel, M., Prokop, P., & Usak, M. (2008). Science student teachers’ ideas of the heart. Journal of Baltic Science Education, 7, 78-86.
  • Bakeman, R., & Gottman, J. M. (1997) Observing interaction: Introduction to sequential analysis (2nd ed.), Cambridge: Cambridge University Press.
  • Bozkurt, A., & Koç, Y. (2012). Investigating first year elementary mathematics teacher education students’ knowledge of prism. Educa-tional Sciences: Theory & Practice, 12, 2949-2952.
  • Brown, C. A., & Borko, H. (1992). Becoming a mathematics teacher. In D.A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 209–239). New York: Macmillan.
  • Burger, E. B, Chard, D. J, Hall, E. J, Kennedy, P. A., Leinward, S. J., Renfro, F. L., Roby, T. W, Seymour, D. G., & Waits, B. K. (2008). California Geometry. Austin: A Harcourt Education Company
  • Cunningham, F., & A. Roberts. 2010. Reducing the mismatch of geometry concept definitions and concept images held by pre-service teachers. IUMPS The Journal, 1, 1– 17.
  • Çetin, Ö. F., & Dane, A. (2004). Sınıf öğretmenliği 3. sınıf öğrencilerinin geometrik bilgilere erişi düzeyleri üzerine. Kastamonu Eğitim Dergisi, 12, 427-436.
  • Dane, A., & Başkurt, H. (2011). İlköğretim 6, 7 ve 8. sınıf öğrencilerinin doğru parçası, doğrusallık, ışın ve açı kavramlarını algılama düzeyleri. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 13, 85-104.
  • Driscoll, M. J., DiMatteo, R. W., Nikula, J., & Egan, M. (2007). Fostering geometric thinking: A guide for teachers, grades 5-10. Portsmouth, NH: Heinemann.
  • Dubs, H. H.(1943). Definition and its problems. The Philosophical Review, 52, 566-577.
  • Govender, R., & De Villiers, M. (2003). Constructive evaluation of definitions in a dynamic geometry context. Journal of the Korea Society of Mathematical Education Series D: Research in Mathematical Education, 7, 41-58.
  • Jones, K., Mooney, C., & Harries, T. (2002). Trainee primary teachers' knowledge of geometry for teaching. Proceedings of the British Society for Research into Learning Mathematics, 22(2), 95-100.
  • Herbst, P., Gonzalez, G., & Macke, M. (2005). How can geometry students understand what it means to define in mathematics? The Mathematics Educator, 15, 17-24.
  • Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge: The case of mathematics. New Jersey: Lawrance Erlbaum.
  • Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achieve-ment, American Educational Research Journal, 42, 371-406. doi: 10.3102/00028312042002371
  • Kaptan, S. (1993). Bilimsel araştırma ve istatistik teknikleri. Ankara: Tekışık yayınları.
  • Keiser, J. M. (2004). Struggles with developing the concept of angle: Comparing sixth-grade students' discourse to the history of the angle concept. Mathematical thinking and learning, 6(3), 285-306.
  • Keiser, J. M., Klee, A., & Fitch, K. (2003). An assessment of students' understanding of angle. Mathematics Teaching in the Middle School, 9(2), 116-119.
  • Kieran, C. (1986a). Logo and the notion of angle among fourth and sixth grade children. In L. Burton, & C. Hoyles (Eds.) Proceedings of Psychology in Mathematics Education 10 (s. 99-104). London: City University.
  • MEB (2009). 9. sınıf geometri ders kitabı. Ankara: MEB.
  • Miles, B. M., & Huberman, A. M. (1994). Qualitative data analysis (2nd ed.). London: Sage.
  • Mitchelmore, M. C., & White, P. (2000). Development of angle concepts by progressive abstraction and generalisation. Educational Studies in Mathematics, 41(3), 209-238. doi: 10.1023/A:1003927811079
  • Robson, C. (1993). Real world research. Oxford: Blackwell Publishers.
  • Strauss, A. L. & Corbin, J. (1990). Basics of a qualitative research: Grounded theory precedures and techniques. Newbury Park, CA: Sage.
  • Tunç, M. P., & Durmuş, S. (2012). Pre-service elementary school classroom and mathematics teachers’ interpretations about the defini-tion of angle concept. Energy Education Science and Technology Part B: Social and Educational Studies, 4, 131-140.
  • Vinner, S. (1991). The role of definitions in the teaching and learning mathematics, In D. O. Tall (Ed.), Advanced mathematical thinking (pp. 65-81). Dordrecht: Kluwer.
  • Wren, L. (1973). Basic mathematical concepts. NY: McGraw Hill, Inc.
  • Yazgan, G., Argün, Z. ve Emre, E. (2009). Teacher sceneries related to “angle concept”: Turkey case. Procedia-Social and Behavioral Sciences, 1, 285-290.
  • Yeşildere, S. (2003). İlköğretim matematik öğretmen adaylarının matematiksel alan dilini kullanma yeterlikleri. Boğaziçi Üniversitesi Eğitim Dergisi, 24(2), 61-70.
  • Young, J. A., & Bush, G. A. (1971). Geometry for elementary teachers. London: Holden-Day.
  • Zaslavsky, O., & Shir, K. (2005). Students' conceptions of a mathematical definition. Journal for Research in Mathematics Education, 36, 317-346.
  • Zembat, (2013). Matematiksel Analizi ile Ölçme Kavramı ve Uzunluk, Alan ve Hacim Nitelikleri, İçinde Editörler I. O.Zembat, M. F.Özmantar, E.Bingölbali, H.Şandır, A.Delice, Tanımları ve Tarihsel Gelişimleriyle Matematiksel Kavramlar, pp. 519-528, 2013, Ankara: Pegem yayıncılık.

Ortaokul Matematik Öğretmen Adaylarının Açı Kavramına Dair Bilgi-lerinin İncelenmesi

Year 2019, , 949 - 958, 15.05.2019
https://doi.org/10.24106/kefdergi.807

Abstract

Bu çalışmada ortaokul matematik öğretmen adaylarının açı kavramını
tanımlama ve şeklini çizmeye dair bilgileri incelenmiştir. Bu amaçla
Türkiye’nin güneyindeki bir üniversitenin ilköğretim matematik öğretmenliği
bölümü bahar döneminde geometri dersi alan toplam 151 katılımcıdan veri toplanmıştır.
Veri toplama sürecinde katılımcılara temel geometrik kavramların tanım ve
çizimlerinin istendiği bir bilgi toplama formu uygulanmıştır. Çalışma
kapsamında bu formda yer alan açı kavramına dair veriler analiz edilmiştir.
Veriler nitel olarak analiz edilmiştir. Araştırmanın bulgularına göre
katılımcıların açı çizimlerinde genellikle ölçüye veya iç bölgeye işaret
ettikleri, tanımlarının da bu yönde olduğu görülmüştür. Öyle ki katılımcılar
tanımlarının büyük çoğunluğunda açıyı ölçü, yer, bölge veya eğim olarak ifade
etmişlerdir. Diğer taraftan katılımcıların tanım yaparken kullandıkları
matematiksel dilin sıkıntılı olduğu görülmüştür. 

References

  • Adams, T. L. (2003). Reading mathematics: More than words can say. The Reading Teacher, 56, 786-795. doi: 10.2307/20205297
  • Aiken, L. R. (1972). Language factors in learning mathematics. Review of Educational Research, 42, 359-385. doi: 10.3102/00346543042003359
  • Allendoerfer, C. B. (1965). Angles, arcs, and Archimedes. The Mathematics Teacher, 58(2), 82-88.
  • Arshavsky, N. & Goldenberg, E.P. (2005). Perceptions of a quadrilateral in a dynamic environment. In D. Carraher, R. Nemirovksy, & A. Schliemann (Eds.) Journal for Research in Mathematics Education Monograph XIII: Medium and meaning: Video papers in mathematics education research. Reston, VA: National Council of Teachers of Mathematics.
  • Aslan, D., & Arnas, Y. A. (2007). Three‐to six‐year‐old children’s recognition of geometric shapes. International Journal of Early Years Education, 15(1), 83-104.
  • Aydın, İ., & Peken, M. (2009). Ortaöğretim geometri 1 ders kitabı. Ankara: Farklı Yayınevi.
  • Aydın, E, & Gündoğdu, L. (2016). Ortaokul Matematik 6 Ders kitabı, Ankara: Sevgi Yayınları.
  • Bahar, M., Ozel, M., Prokop, P., & Usak, M. (2008). Science student teachers’ ideas of the heart. Journal of Baltic Science Education, 7, 78-86.
  • Bakeman, R., & Gottman, J. M. (1997) Observing interaction: Introduction to sequential analysis (2nd ed.), Cambridge: Cambridge University Press.
  • Bozkurt, A., & Koç, Y. (2012). Investigating first year elementary mathematics teacher education students’ knowledge of prism. Educa-tional Sciences: Theory & Practice, 12, 2949-2952.
  • Brown, C. A., & Borko, H. (1992). Becoming a mathematics teacher. In D.A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 209–239). New York: Macmillan.
  • Burger, E. B, Chard, D. J, Hall, E. J, Kennedy, P. A., Leinward, S. J., Renfro, F. L., Roby, T. W, Seymour, D. G., & Waits, B. K. (2008). California Geometry. Austin: A Harcourt Education Company
  • Cunningham, F., & A. Roberts. 2010. Reducing the mismatch of geometry concept definitions and concept images held by pre-service teachers. IUMPS The Journal, 1, 1– 17.
  • Çetin, Ö. F., & Dane, A. (2004). Sınıf öğretmenliği 3. sınıf öğrencilerinin geometrik bilgilere erişi düzeyleri üzerine. Kastamonu Eğitim Dergisi, 12, 427-436.
  • Dane, A., & Başkurt, H. (2011). İlköğretim 6, 7 ve 8. sınıf öğrencilerinin doğru parçası, doğrusallık, ışın ve açı kavramlarını algılama düzeyleri. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 13, 85-104.
  • Driscoll, M. J., DiMatteo, R. W., Nikula, J., & Egan, M. (2007). Fostering geometric thinking: A guide for teachers, grades 5-10. Portsmouth, NH: Heinemann.
  • Dubs, H. H.(1943). Definition and its problems. The Philosophical Review, 52, 566-577.
  • Govender, R., & De Villiers, M. (2003). Constructive evaluation of definitions in a dynamic geometry context. Journal of the Korea Society of Mathematical Education Series D: Research in Mathematical Education, 7, 41-58.
  • Jones, K., Mooney, C., & Harries, T. (2002). Trainee primary teachers' knowledge of geometry for teaching. Proceedings of the British Society for Research into Learning Mathematics, 22(2), 95-100.
  • Herbst, P., Gonzalez, G., & Macke, M. (2005). How can geometry students understand what it means to define in mathematics? The Mathematics Educator, 15, 17-24.
  • Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge: The case of mathematics. New Jersey: Lawrance Erlbaum.
  • Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achieve-ment, American Educational Research Journal, 42, 371-406. doi: 10.3102/00028312042002371
  • Kaptan, S. (1993). Bilimsel araştırma ve istatistik teknikleri. Ankara: Tekışık yayınları.
  • Keiser, J. M. (2004). Struggles with developing the concept of angle: Comparing sixth-grade students' discourse to the history of the angle concept. Mathematical thinking and learning, 6(3), 285-306.
  • Keiser, J. M., Klee, A., & Fitch, K. (2003). An assessment of students' understanding of angle. Mathematics Teaching in the Middle School, 9(2), 116-119.
  • Kieran, C. (1986a). Logo and the notion of angle among fourth and sixth grade children. In L. Burton, & C. Hoyles (Eds.) Proceedings of Psychology in Mathematics Education 10 (s. 99-104). London: City University.
  • MEB (2009). 9. sınıf geometri ders kitabı. Ankara: MEB.
  • Miles, B. M., & Huberman, A. M. (1994). Qualitative data analysis (2nd ed.). London: Sage.
  • Mitchelmore, M. C., & White, P. (2000). Development of angle concepts by progressive abstraction and generalisation. Educational Studies in Mathematics, 41(3), 209-238. doi: 10.1023/A:1003927811079
  • Robson, C. (1993). Real world research. Oxford: Blackwell Publishers.
  • Strauss, A. L. & Corbin, J. (1990). Basics of a qualitative research: Grounded theory precedures and techniques. Newbury Park, CA: Sage.
  • Tunç, M. P., & Durmuş, S. (2012). Pre-service elementary school classroom and mathematics teachers’ interpretations about the defini-tion of angle concept. Energy Education Science and Technology Part B: Social and Educational Studies, 4, 131-140.
  • Vinner, S. (1991). The role of definitions in the teaching and learning mathematics, In D. O. Tall (Ed.), Advanced mathematical thinking (pp. 65-81). Dordrecht: Kluwer.
  • Wren, L. (1973). Basic mathematical concepts. NY: McGraw Hill, Inc.
  • Yazgan, G., Argün, Z. ve Emre, E. (2009). Teacher sceneries related to “angle concept”: Turkey case. Procedia-Social and Behavioral Sciences, 1, 285-290.
  • Yeşildere, S. (2003). İlköğretim matematik öğretmen adaylarının matematiksel alan dilini kullanma yeterlikleri. Boğaziçi Üniversitesi Eğitim Dergisi, 24(2), 61-70.
  • Young, J. A., & Bush, G. A. (1971). Geometry for elementary teachers. London: Holden-Day.
  • Zaslavsky, O., & Shir, K. (2005). Students' conceptions of a mathematical definition. Journal for Research in Mathematics Education, 36, 317-346.
  • Zembat, (2013). Matematiksel Analizi ile Ölçme Kavramı ve Uzunluk, Alan ve Hacim Nitelikleri, İçinde Editörler I. O.Zembat, M. F.Özmantar, E.Bingölbali, H.Şandır, A.Delice, Tanımları ve Tarihsel Gelişimleriyle Matematiksel Kavramlar, pp. 519-528, 2013, Ankara: Pegem yayıncılık.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Studies on Education
Journal Section Review Article
Authors

Ali Bozkurt 0000-0002-0176-4497

Yusuf Koç 0000-0002-6346-5505

Ali Kemal Cilavdaroğlu

Publication Date May 15, 2019
Acceptance Date February 25, 2019
Published in Issue Year 2019

Cite

APA Bozkurt, A., Koç, Y., & Cilavdaroğlu, A. K. (2019). Ortaokul Matematik Öğretmen Adaylarının Açı Kavramına Dair Bilgi-lerinin İncelenmesi. Kastamonu Education Journal, 27(3), 949-958. https://doi.org/10.24106/kefdergi.807

10037