BibTex RIS Cite

ORTAÖĞRETİM ÖĞRENCİLERİNİN SONSUZLUK ALGILARI

Year 2013, Volume: 21 Issue: 3, 1235 - 1252, 15.07.2016

Abstract

Bu çalışmada ortaöğretim öğrencilerinin sonsuzluk kavramını nasıl algıladıklarını tespit etmek amaçlanmıştır. Nitel araştırma yöntemlerinden olgu bilim deseni kullanılmıştır. Çalışmanın katılımcıları 38’i kız, 34’ü erkek olmak üzere toplam 72 ortaöğretim öğrencisinden oluşmaktadır. Veri toplama aracı olarak açık uçlu bir test ve odak grup görüşmesi kullanılmıştır. Çalışmadan elde edilen verilerin analizinde betimsel ve içerik analizi kullanılmıştır. Görüşme verilerin analizinden elde edilen kategoriler, kodlar ve kodlara ilişkin frekanslar oluşturulmuştur. Öğrencilerin sonsuz kümelerin bire-bir eşleştirilmesi konusunda birtakım tereddütlerinin oldukları tespit edilmiştir. Öğrencilerin günlük yaşam tecrübeleriyle her şeyin bir sonunun olduğunu gözlemlemeleri, sonsuzluk anlayışlarını da kısıtlamış ve matematiksel sonsuzluk anlayışından uzaktır. Matematiksel sonsuzluk anlayışının geliştirilmesi gerekir.

References

  • Allen, G. D. (2000). The History of Infinity. http://www.math.tamu.edu/~dallen/history/infi- nity.pdf (2013, Mayıs 13)
  • Alsan, S. (1983). Matematik Sonsuz. Bilim ve Teknik Dergisi,.10-13.
  • Aztekin, S., Arıkan, A., & Srirasman, B. (2010). The Constructs of PhD Students about Infin- ity: An Application. The Montana Mathematics Enthusiast, 7, 149-174.
  • Clegg, B. (2003). A Brief History of Infinity: The Quest to Think the Unthinkable. Robinson Publishing.
  • Di Sessa, A. (1988). Constructivism in the Computer Age. In G. Forman, & P. Pufall, Knowl- edge in pieces (pp. 49-70). Hillsdale,NJ: Lawrence Erlbaum Associates.Inc.
  • Di Sessa, A. (1993). Toward an Epistemology of Physics. Cognition and Instruction, 10(2-3), 105-225.
  • Dursun, Y. (2007). Hegel’de Bir ve Çok Kavramları Üzerine Kaygı. Uludağ Üniversitesi Fen-Edebiyat Fakültesi Felsefe Dergisi,9, 77-84.
  • Fischbein, E. (2001). Tacit Models and Infinity. Educational Studies in Mathematics, 48, 309- 329.
  • Fischbein, E., Tirosh, D., & Hess, P. (1979). The intuition of infinity. Educational Studies in Mathematics, 10, 3-40.
  • Jirotkova, D., & Littler, G. (2004). Insight into pupils’ understanding of infinity in a geometrical context. Proceedings of the28th Conference of the International Group for the Psychology of Mathematics Education. 3, pp. 97–104. Bergen: PME.
  • Kim, D.-J., Sfard, A., & Ferrini-Mundy, J. (2005). Students’ Colloquial and Mathematical Dis- courses on Infinity and Limit. In H. L. Chick, & J. L. Vincent (Ed.), Proceedings of the 29th Conference of the International Group for the Psycology of Mathematics Education. 3, pp. 201-208. Melbourne: PME.
  • Monaghan, J. (2001). Young Peoples’ Ideas of Infinity. Educational Studies in Mathematics, 48, 239–257.
  • Özmantar, M.F. (2010). Sonsuzluk Kavramı: Tarihsel Gelişimi, Öğrenci Zorlukları ve Çözüm Önerileri. Matematiksel Kavram Yanılgıları ve Çözüm Önerileri (Editörler: Özmantar, M.F., Bingölbali E., ve Akkoç, H.), Pegem Akadem,. s.151-180.
  • Patton, M. Q. (1987). How to Use Qualitative Methods in Evaluation. Newbury Park, CA: Sage.
  • Stewart, C. J., & Cash, W. B. (1985). Interviewing: Priniples and Practices (4. ed.). Dubuque, IO: Wm. C. Brown Pub.
  • Tall, D. O. (1980). The Notion of İnfinite Measuring Number and its Relevance in The İntuition of İnfinity. Educational Studies in Mathematics, 11, 271-284.
  • Tall, D. O. (2001). Natural and Formal Infinities. Educational Studies in Mathematics, 48, 199– 238.
  • Tirosh, D. (1991). The Role of Students’ Intuitions of infinity in Teaching the Cantorian The- ory. In D. Tall, Advanced Mathematical Thinking (pp. 201-214). The Netherlands: Kluwer Academic Publishers.
  • Tsamir, P. (2001). When ‘the Same’ is not Perceived as such: The Case of. Educational Studies in Mathematics, 48, 289-307.
  • Tsamir, P., and Dreyfus , T. (2002). Comparing Infinite Sets - A Process of Abstraction: The Case of Ben. Journal of Mathematical Behavior, 21, 1-23.
  • Tsamir, P., and Tirosh , D. (1999). Consistency and Representations: The Case of Actual Infinity. Journal for Research in Mathematics Education, 30, 213-219.
  • Yıldırım, A., ve Şimşek, H. (2008). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seç- kin Yayıncılık.
  • Yıldırım, C. (1996). Matematiksel Düşünme. İstanbul: Remzi Kitabevi.

HIGH SCHOOL STUDENTS’ PERCEPTIONS OF INFINITY

Year 2013, Volume: 21 Issue: 3, 1235 - 1252, 15.07.2016

Abstract

The aim of this study was to determine how secondary high students school students perceived the concept of infinity. Phenomenological design, which is among the qualitative research methods, was used in this study. The participants of the study were 72 secondary high school students (38 females and 34 males). An open-ended test and focus group discussion were used as the data collection tools. Descriptive analysis and content analysis were used in analyzing the data that was obtained from the study. Categories, codes and frequencies about the codes were formed, which were obtained from the analysis of discussion data. It was found that the students experienced a number of hesitations in one-to-one correspondence of infinite sets. The fact that the students observed that everything has an end through daily life experiences limited their understanding of infinity. This condition does not fit the understanding of mathematical infinity. The understanding of mathematical infinity must be developed.

References

  • Allen, G. D. (2000). The History of Infinity. http://www.math.tamu.edu/~dallen/history/infi- nity.pdf (2013, Mayıs 13)
  • Alsan, S. (1983). Matematik Sonsuz. Bilim ve Teknik Dergisi,.10-13.
  • Aztekin, S., Arıkan, A., & Srirasman, B. (2010). The Constructs of PhD Students about Infin- ity: An Application. The Montana Mathematics Enthusiast, 7, 149-174.
  • Clegg, B. (2003). A Brief History of Infinity: The Quest to Think the Unthinkable. Robinson Publishing.
  • Di Sessa, A. (1988). Constructivism in the Computer Age. In G. Forman, & P. Pufall, Knowl- edge in pieces (pp. 49-70). Hillsdale,NJ: Lawrence Erlbaum Associates.Inc.
  • Di Sessa, A. (1993). Toward an Epistemology of Physics. Cognition and Instruction, 10(2-3), 105-225.
  • Dursun, Y. (2007). Hegel’de Bir ve Çok Kavramları Üzerine Kaygı. Uludağ Üniversitesi Fen-Edebiyat Fakültesi Felsefe Dergisi,9, 77-84.
  • Fischbein, E. (2001). Tacit Models and Infinity. Educational Studies in Mathematics, 48, 309- 329.
  • Fischbein, E., Tirosh, D., & Hess, P. (1979). The intuition of infinity. Educational Studies in Mathematics, 10, 3-40.
  • Jirotkova, D., & Littler, G. (2004). Insight into pupils’ understanding of infinity in a geometrical context. Proceedings of the28th Conference of the International Group for the Psychology of Mathematics Education. 3, pp. 97–104. Bergen: PME.
  • Kim, D.-J., Sfard, A., & Ferrini-Mundy, J. (2005). Students’ Colloquial and Mathematical Dis- courses on Infinity and Limit. In H. L. Chick, & J. L. Vincent (Ed.), Proceedings of the 29th Conference of the International Group for the Psycology of Mathematics Education. 3, pp. 201-208. Melbourne: PME.
  • Monaghan, J. (2001). Young Peoples’ Ideas of Infinity. Educational Studies in Mathematics, 48, 239–257.
  • Özmantar, M.F. (2010). Sonsuzluk Kavramı: Tarihsel Gelişimi, Öğrenci Zorlukları ve Çözüm Önerileri. Matematiksel Kavram Yanılgıları ve Çözüm Önerileri (Editörler: Özmantar, M.F., Bingölbali E., ve Akkoç, H.), Pegem Akadem,. s.151-180.
  • Patton, M. Q. (1987). How to Use Qualitative Methods in Evaluation. Newbury Park, CA: Sage.
  • Stewart, C. J., & Cash, W. B. (1985). Interviewing: Priniples and Practices (4. ed.). Dubuque, IO: Wm. C. Brown Pub.
  • Tall, D. O. (1980). The Notion of İnfinite Measuring Number and its Relevance in The İntuition of İnfinity. Educational Studies in Mathematics, 11, 271-284.
  • Tall, D. O. (2001). Natural and Formal Infinities. Educational Studies in Mathematics, 48, 199– 238.
  • Tirosh, D. (1991). The Role of Students’ Intuitions of infinity in Teaching the Cantorian The- ory. In D. Tall, Advanced Mathematical Thinking (pp. 201-214). The Netherlands: Kluwer Academic Publishers.
  • Tsamir, P. (2001). When ‘the Same’ is not Perceived as such: The Case of. Educational Studies in Mathematics, 48, 289-307.
  • Tsamir, P., and Dreyfus , T. (2002). Comparing Infinite Sets - A Process of Abstraction: The Case of Ben. Journal of Mathematical Behavior, 21, 1-23.
  • Tsamir, P., and Tirosh , D. (1999). Consistency and Representations: The Case of Actual Infinity. Journal for Research in Mathematics Education, 30, 213-219.
  • Yıldırım, A., ve Şimşek, H. (2008). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seç- kin Yayıncılık.
  • Yıldırım, C. (1996). Matematiksel Düşünme. İstanbul: Remzi Kitabevi.
There are 23 citations in total.

Details

Other ID JA43SP27ZE
Journal Section Review Article
Authors

Tevfik İşleyen This is me

Publication Date July 15, 2016
Published in Issue Year 2013 Volume: 21 Issue: 3

Cite

APA İşleyen, T. (2016). HIGH SCHOOL STUDENTS’ PERCEPTIONS OF INFINITY. Kastamonu Education Journal, 21(3), 1235-1252.

10037