BibTex RIS Cite

ON A NEW SUBCLASS OF P-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

Year 2013, Volume: 21 Issue: 3, 945 - 960, 15.07.2016

Abstract

We introduce a new subclass of analytic and valent functions with negative coefficients. Coefficient theorem, distortion theorem and closure theorem of functions belonging to the class are determined. Also we obtain radius of convexity for Integral operators of functions belonging to the class are studied here. Furthermore the extreme points of are also determined.

References

  • M. K. Aouf, Certain classes of p −valent functions with negative coefficients II, Indian J. Pure Appl. Math. 19 (8), (1988), 761-767.
  • T. R. Caplinger, On certain classes of analytic functions, Ph. D. Thesis University of Mississipi, (1972).
  • V. P. Gupta, P. K. Jain, On certain classes of univalent functions with negative coeffici- ents, Bull. Aust. Math. Soc. 15, (1976), 467-473.
  • O. P. Juneja, M. L. Mogra, radius of convexity for certain classes of univalent analytic functions, Pasific Journal Math. 78, (1978), 359-368.
  • S. R. Kulkarni, Some problems connected with univalent functions, Ph. D. Dissertation Shivaji University Kolhapur (1981).
  • S. R. Kulkarni, M. K. Aouf, S. B. Joshi, On a subfamily of p −valent functions with negative coefficients, Math. Bech. 46 (1994), 71-75.
  • G. S. Salagean, Subclass of univalent functions, Lecture Notes in Math. (springer- Verlag) 1013, (1983), 362-372.
  • H. Orhan and H. Kiziltunç, A generalization on subfamily of p −valent functions with negative coefficients, Appl. Math. Comp. 155 (2004) 521-530.

NEGATİF KATSAYILI p-VALENT FONKSİYONLARIN BİR YENİ ALTSINIFI HAKKINDA

Year 2013, Volume: 21 Issue: 3, 945 - 960, 15.07.2016

Abstract

Bu makalede negative katsayılı valent analitik fonksiyonların ile gösterilen yeni bir sınıfı tanıtıldı. sınıfına ait fonksiyonlar için katsayı teoremi, distorsiyon teoremi ve kapanış teoremi belirlendi. Ayrıca sınıfı için konvekslik yarıçapı elde edildi. Bundan başka sınıfına ait fonksiyonların integral operatörleri çalışıldı. Bunlara ilave olarak sınıfının extreme noktaları belirlendi.

References

  • M. K. Aouf, Certain classes of p −valent functions with negative coefficients II, Indian J. Pure Appl. Math. 19 (8), (1988), 761-767.
  • T. R. Caplinger, On certain classes of analytic functions, Ph. D. Thesis University of Mississipi, (1972).
  • V. P. Gupta, P. K. Jain, On certain classes of univalent functions with negative coeffici- ents, Bull. Aust. Math. Soc. 15, (1976), 467-473.
  • O. P. Juneja, M. L. Mogra, radius of convexity for certain classes of univalent analytic functions, Pasific Journal Math. 78, (1978), 359-368.
  • S. R. Kulkarni, Some problems connected with univalent functions, Ph. D. Dissertation Shivaji University Kolhapur (1981).
  • S. R. Kulkarni, M. K. Aouf, S. B. Joshi, On a subfamily of p −valent functions with negative coefficients, Math. Bech. 46 (1994), 71-75.
  • G. S. Salagean, Subclass of univalent functions, Lecture Notes in Math. (springer- Verlag) 1013, (1983), 362-372.
  • H. Orhan and H. Kiziltunç, A generalization on subfamily of p −valent functions with negative coefficients, Appl. Math. Comp. 155 (2004) 521-530.
There are 8 citations in total.

Details

Other ID JA43RJ96FZ
Journal Section Review Article
Authors

Ömer Durmazpınar This is me

Publication Date July 15, 2016
Published in Issue Year 2013 Volume: 21 Issue: 3

Cite

APA Durmazpınar, Ö. (2016). ON A NEW SUBCLASS OF P-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS. Kastamonu Education Journal, 21(3), 945-960.

10037