Review
BibTex RIS Cite

Yeşil Altyapı Uygulamaları Kapsamında Biyotutma Sistemlerinin Yağmur Suyu Kirletici Giderim Verimlerinin Değerlendirilmesi

Year 2021, , 853 - 866, 15.09.2021
https://doi.org/10.35674/kent.961967

Abstract

İklim değişikliğinin etkileri kentlerde aşırı yağışlar, erozyon, seller, hava kirliliği, su kıtlığı, kuraklık olarak görülmektedir. İklim değişikliğinin kentsel alanlarda etkilerini azaltmak ve çevresel sürdürülebilirliğin sağlanması için yeşil altyapı uygulamaları karşımıza çıkmaktadır. Yeşil altyapı uygulamaları ile, yapısal çözümler yerine ekolojik çözüm olarak biyotutma sistemlerinin kullanılması ile hem yağmur suyunun kirleticilerden arıtılması hem de kentsel hidrolojik döngü sağlanmaktadır. Farklı alan kullanımlarına bağlı olarak yağmur suyuyla taşınan çeşitli organik ve inorganik maddeler yüzey suyu kalitesini bozmaktadır. Biyotutma sistemleri, akışa geçen yağmur suyu miktarını azaltırken aynı zamanda sudaki kirleticileri fiziksel, kimyasal ve biyolojik süreçlerle azaltmaktadır. Bu çalışmada, çeşitli biyotutma sistemlerinin giderim süreçleri göz önünde bulundurularak saha çalışmalarında elde edilen azot, fosfor ve bazı ağır metallerin giderim verimleri incelenmiştir. Giderim veriminin; kirletici tür ve konsantrasyonu, arazi kullanım çeşitleri, biyotutma ortamı olarak hazırlanan toprak karışımı ve yağış miktarına bağlı olarak değiştiği görülmüştür.

Supporting Institution

TRAKYA ÜNİVERSİTESİ

Project Number

2020/76

Thanks

Bu çalışma, Trakya Üniversitesi Bilimsel Araştırma Projeleri Birimi (TÜBAP, Proje Numarası: 2020/76) tarafından desteklenen yüksek lisans tezinin bir bölümünü oluşturmaktadır.

References

  • Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2012). Effectiveness of low impact development practices: literature review and suggestions for future research. Water, Air, & Soil Pollution, 223(7), 4253-4273.
  • Bannerman, R. T., Owens, D. W., Dodds, R. B., & Hornewer, N. J. (1993). Sources of pollutants in Wisconsin stormwater. Water Science and technology, 28(3-5), 241-259.
  • Bartley, R., Speirs, W. J., Ellis, T. W., & Waters, D. K. (2012). A review of sediment and nutrient concentration data from Australia for use in catchment water quality models. Marine pollution bulletin, 65(4-9), 101-116.
  • Bayrak Yılmaz, G. (2011). Yüzey Sularında Uzun Süreli Besi Yüklerinin Etkisinin Belirlenmesi: Ergene Havzası Örneği. Doktora Tezi, 168s İstanbul Üniversitesi/Fen Bilimleri Enstitüsü, İstanbul.
  • Bayrak, G., Keleş, E., Ölmez, Z. (2019). Investigation of Green Infrastructure Applicationability in Edirne City Center. XIth International Sinan Symposium Proceedings Book, 11-12 April 2019, Trakya University Faculty of Architecture, Edirne.
  • Benedict, M. A., & McMahon, E. T. (2002). Green infrastructure: smart conservation for the 21st century. Renewable resources journal, 20(3), 12-17.
  • Brown, R. A., & Hunt III, W. F. (2011). Impacts of media depth on effluent water quality and hydrologic performance of undersized bioretention cells. Journal of Irrigation and Drainage Engineering, 137(3), 132-143.
  • Carpenter, D. D., & Hallam, L. (2010). Influence of planting soil mix characteristics on bioretention cell design and performance. Journal of Hydrologic Engineering, 15(6), 404-416.
  • Center for Neighborhood Technology (CNT) (2010). The Value of Green Infrastructure A Guide to Recognizing Its Economic, Environmental and Social Benefits. 14.04.2021 tarihinde https://www.cnt.org/sites/default/files/publications/CNT_Value-of-Green-Infrastructure.pdf adresinden erişildi.
  • Chen, X., Peltier, E., Sturm, B. S., & Young, C. B. (2013). Nitrogen removal and nitrifying and denitrifying bacteria quantification in a stormwater bioretention system. Water Research, 47(4), 1691-1700.
  • Chow, M. F., Yusop, Z., & Shirazi, S. M. (2013). Storm runoff quality and pollutant loading from commercial, residential, and industrial catchments in the tropic. Environmental monitoring and assessment, 185(10), 8321-8331.
  • Davis A.P., McCuen R.H. (2005). Stormwater Management for Smart Growth, Springer US. Boston, MA. P368.
  • Davis, A. P. (2007). Field performance of bioretention: Water quality. Environmental Engineering Science, 24(8), 1048-1064.
  • Davis, A. P., Hunt, W. F., Traver, R. G., & Clar, M. (2009). Bioretention technology: Overview of current practice and future needs. Journal of environmental engineering, 135(3), 109-117.
  • Davis, A. P., Shokouhian, M., Sharma, H., & Minami, C. (2006). Water quality improvement through bioretention media: Nitrogen and phosphorus removal. Water Environment Research, 78(3), 284-293.
  • Davis, A. P., Shokouhian, M., Sharma, H., Minami, C., & Winogradoff, D. (2003). Water quality improvement through bioretention: Lead, copper, and zinc removal. Water Environment Research, 75(1), 73-82.
  • De Rozari, P., Greenway, M., & El Hanandeh, A. (2018). Nitrogen removal from sewage and septage in constructed wetland mesocosms using sand media amended with biochar. Ecological Engineering, 111, 1-10.
  • Demir D. (2012). Konvansiyonel Yağmursuyu Yönetim Sistemleri ile Sürdürülebilir Yağmursuyu Yönetim Sistemlerinin Karşılaştırılması: İTÜ Ayazağa Yerleşkesi Örneği. Yüksek Lisans Tezi, 2s, İstanbul Teknik Üniversitesi/Fen Bilimleri Enstitüsü, İstanbul.
  • Dietz, M. E. (2007). Low impact development practices: A review of current research and recommendations for future directions. Water, air, and soil pollution, 186(1), 351-363.
  • Dietz, M. E., & Clausen, J. C. (2006). Saturation to improve pollutant retention in a rain garden. Environmental science & technology, 40(4), 1335-1340.
  • EEA (2020). 11.12.2020 tarihinde https://www.eea.europa.eu/themes/water/european-waters/water-use-and-environmental-pressures adresinden erişildi.
  • Ely, M., & Pitman, S. D. (2014). Green Infrastructure: Life support for human habitats. The Compelling Evidence for Incorporating Nature into Urban Environments, Green Infrastructure project, Department of Environment, Water and Natural Resources, Botanic Gardens of South Australia.
  • Fisch, J. (2014). Green Infrastructure and the Sustainability Concept: A Case Study of the Greater New Orleans Urban Water Plan. Master’s thesis: University of New Orleans.
  • Francey, M., Fletcher, T. D., Deletic, A., & Duncan, H. (2010). New insights into the quality of urban storm water in Southeastern Australia. Journal of Environmental Engineering, 136(4), 381-390.
  • Geronimo, F. K. F., Maniquiz-Redillas, M. C., & Kim, L. H. (2013). Treatment of parking lot runoff by a tree box filter. Desalination and water treatment, 51(19-21), 4044-4049.
  • Göbel, P., Dierkes, C., & Coldewey, W. G. (2007). Storm water runoff concentration matrix for urban areas. Journal of contaminant hydrology, 91(1-2), 26-42.
  • Goh, H. W., Lem, K. S., Azizan, N. A., Chang, C. K., Talei, A., Leow, C. S., & Zakaria, N. A. (2019). A review of bioretention components and nutrient removal under different climates—future directions for tropics. Environmental Science and Pollution Research, 26(15), 14904-14919.
  • Gülgün, B., & Yazıcı, K. (2016). Yeşil Altyapı Sistemlerinde Mevcut Uygulamalar. Ziraat Mühendisleri Dergisi, (363), 33–39.
  • Hatt, B. E., Fletcher, T. D., & Deletic, A. (2009). Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. Journal of Hydrology, 365(3-4), 310-321.
  • Hunt, W. F., Jarrett, A. R., Smith, J. T., & Sharkey, L. J. (2006). Evaluating bioretention hydrology and nutrient removal at three field sites in North Carolina. Journal of Irrigation and Drainage Engineering, 132(6), 600-608.
  • Hunt, W. F., Smith, J. T., Jadlocki, S. J., Hathaway, J. M., & Eubanks, P. R. (2008). Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, NC. Journal of Environmental Engineering, 134(5), 403-408.
  • Jiang, C. B., Li, J. K., Zhang, B. H., Ruan, T. S., Li, H. E., & Dong, W. (2018). Design parameters and treatment efficiency of a retrofit bioretention system on runoff nitrogen removal. Environmental Science and Pollution Research, 25(33), 33298-33308.
  • Jiang, C., Li, J., Li, H., Li, Y., & Chen, L. (2017). Field performance of bioretention systems for runoff quantity regulation and pollutant removal. Water, Air, & Soil Pollution, 228(12), 1-13.
  • Jotte, L., Raspati, G. & Azrague, K. (2017). Review of stormwater management practices. Klima 2050 Report 7. Trondheim, 2017. ISBN: 978-82-536-1545-5
  • Kloss, C., Calarusse, C., Stoner, N. (2006). Rooftops to rivers: Green strategies for controlling stormwater and combined sewer overflows. Natural Resources Defense Council, Washington D.C.
  • Kluge, B., Markert, A., Facklam, M., Sommer, H., Kaiser, M., Pallasch, M., & Wessolek, G. (2018). Metal accumulation and hydraulic performance of bioretention systems after long-term operation. Journal of soils and sediments, 18(2), 431-441. LeFevre, G. H., Paus, K. H., Natarajan, P., Gulliver, J. S., Novak, P. J., & Hozalski, R. M. (2015). Review of dissolved pollutants in urban storm water and their removal and fate in bioretention cells. Journal of Environmental Engineering, 141(1), 04014050.
  • Li, L., & Davis, A. P. (2014). Urban stormwater runoff nitrogen composition and fate in bioretention systems. Environmental science & technology, 48(6), 3403-3410.
  • Liu, J., & Davis, A. P. (2014). Phosphorus speciation and treatment using enhanced phosphorus removal bioretention. Environmental science & technology, 48(1), 607-614.
  • Liu, J., Sample, D. J., Bell, C., & Guan, Y. (2014). Review and research needs of bioretention used for the treatment of urban stormwater. Water, 6(4), 1069-1099.
  • Macnamara, J., & Derry, C. (2017). Pollution removal performance of laboratory simulations of Sydney’s street stormwater biofilters. Water, 9(11), 907.
  • Mangangka, I. R., Liu, A., Egodawatta, P., & Goonetilleke, A. (2015). Performance characterisation of a stormwater treatment bioretention basin. Journal of environmental management, 150, 173-178.
  • McLeod, S. M., Kells, J. A., & Putz, G. J. (2006). Urban runoff quality characterization and load estimation in Saskatoon, Canada. Journal of environmental engineering, 132(11), 1470-1481.
  • Nazahiyah, R. (2005). Modeling of non-point source pollution from residential and commercial catchments in Skudai, Johor. Master Thesis, University Technology Malaysia, Malaysia.
  • Passeport, E., Hunt, W. F., Line, D. E., Smith, R. A., & Brown, R. A. (2009). Field study of the ability of two grassed bioretention cells to reduce storm-water runoff pollution. Journal of Irrigation and Drainage Engineering, 135(4), 505-510.
  • Peterson, M. A. (2016). The effect of the antecedent dry conditions on nitrogen removal for a modified bioretention system. Doctoral dissertation, University of South Florida.
  • Prince George’s County, Maryland (PGCM). (2007). Bioretention Manual. Environmental Services Division; Department of Environmental Resources, Prince George’s County: Upper Marlboro, MD, USA. Available online: https://www.princegeorgescountymd.gov/Government/AgencyIndex/DER/ESG/Bioretention/pdf/Bioretention%20Manual_2009%20Version.pdf.
  • Roseen, R. M., Ballestero, T. P., Houle, J. J., Avelleneda, P., Wildey, R., & Briggs, J. (2006). Storm water low-impact development, conventional structural, and manufactured treatment strategies for parking lot runoff: Performance evaluations under varied mass loading conditions. Transportation research record, 1984(1), 135-147. Shakouri N. (2016). Kentlerde Yağmursuyu Yönetimi Kapsamında Yeşil Altyapı peyzaj Planlama ve Tasarım Yaklaşımı: Sakarya-Hendek Örneği. Doktora Tezi, 27s. Ankara Üniversitesi/Fen Bilimleri Enstitüsü, Ankara.
  • Singh, R. P., Zhao, F., Ji, Q., Saravanan, J., & Fu, D. (2019). Design and performance characterization of roadside bioretention systems. Sustainability, 11(7), 2040.
  • Stephan, E. A., & Endreny, T. A. (2016). Weighting nitrogen and phosphorus pixel pollutant loads to represent runoff and buffering likelihoods. JAWRA Journal of the American Water Resources Association, 52(2), 336-349.
  • Van der Tak, L., & Edwards, C. (2001). An ArcView GIS tool to calculate nonpoint sources of pollution in watershed and stormwater projects. USEPA: Washington, DC, USA.
  • Wan, Z., Li, T., & Liu, Y. (2018). Effective nitrogen removal during different periods of a field-scale bioretention system. Environmental Science and Pollution Research, 25(18), 17855-17861.
  • Wang, J., Chua, L. H., & Shanahan, P. (2017). Evaluation of pollutant removal efficiency of a bioretention basin and implications for stormwater management in tropical cities. Environmental Science: Water Research & Technology, 3(1), 78-91.
  • Wrage, N., Velthof, G.L., van Beusichem, M.L., Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide, Soil Biology and Biochemistry, 33(12–13), 1723-1732, ISSN 0038-0717, https://doi.org/10.1016/S0038-0717(01)00096-7.
  • Yang, Y. Y., & Lusk, M. G. (2018). Nutrients in urban stormwater runoff: Current state of the science and potential mitigation options. Current Pollution Reports, 4(2), 112-127.
  • Zhang H, Ahmad Z, Shao Y, Yang Z, Jia Y, Zhong H. (2021). Bioretention for removal of nitrogen: processes, operational conditions, and strategies for improvement. Environmental Science and Pollution Research; 28(9):10519-10535. doi: 10.1007/s11356-020-12319-1. Epub 2021 Jan 14. PMID: 33443738.
  • Zhou, Z., Li, H., Song, C., Cao, X., & Zhou, Y. (2017). Prevalence of ammonia-oxidizing bacteria over ammonia-oxidizing archaea in sediments as related to nutrient loading in Chinese aquaculture ponds. Journal of Soils and Sediments, 17(7), 1928-1938.

Evaluation of Stormwater Pollutant Removal Efficiency of Bioretention Systems within the Scope of Green Infrastructure Applications

Year 2021, , 853 - 866, 15.09.2021
https://doi.org/10.35674/kent.961967

Abstract

The effects of climate change are seen as excessive rainfall, erosion, floods, air pollution, water scarcity and drought in cities. Green infrastructure applications are used to reduce the effects of climate change in urban areas and to ensure environmental sustainability. With green infrastructure applications, by using bioretention systems as an ecological solution instead of structural solutions, both the treatment of stormwater from pollutants and the urban hydrological cycle are provided. Depending on the different land uses, various organic and inorganic substances carried by stormwater deteriorate the surface water quality. Bioretention systems reduce the amount of stormwater while at the same time reducing the pollutants in the water through physical, chemical and biological processes.
In this study, the removal efficiencies of nitrogen, phosphorus and some heavy metals obtained in field studies were examined by considering the removal processes of various bioretention systems. It has been seen that removal efficiency varies depending on the pollutant type and concentration, types of land use, soil mixture prepared as a bioretention medium and the amount of precipitation. In this study, the removal efficiencies of nitrogen, phosphorus and some heavy metals obtained in field studies were examined by considering the removal processes of various bioretention systems. It has been seen that removal efficiency varies depending on the pollutant type and concentration, types of land use, soil mixture prepared as a bioretention medium and the amount of precipitation.

Project Number

2020/76

References

  • Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2012). Effectiveness of low impact development practices: literature review and suggestions for future research. Water, Air, & Soil Pollution, 223(7), 4253-4273.
  • Bannerman, R. T., Owens, D. W., Dodds, R. B., & Hornewer, N. J. (1993). Sources of pollutants in Wisconsin stormwater. Water Science and technology, 28(3-5), 241-259.
  • Bartley, R., Speirs, W. J., Ellis, T. W., & Waters, D. K. (2012). A review of sediment and nutrient concentration data from Australia for use in catchment water quality models. Marine pollution bulletin, 65(4-9), 101-116.
  • Bayrak Yılmaz, G. (2011). Yüzey Sularında Uzun Süreli Besi Yüklerinin Etkisinin Belirlenmesi: Ergene Havzası Örneği. Doktora Tezi, 168s İstanbul Üniversitesi/Fen Bilimleri Enstitüsü, İstanbul.
  • Bayrak, G., Keleş, E., Ölmez, Z. (2019). Investigation of Green Infrastructure Applicationability in Edirne City Center. XIth International Sinan Symposium Proceedings Book, 11-12 April 2019, Trakya University Faculty of Architecture, Edirne.
  • Benedict, M. A., & McMahon, E. T. (2002). Green infrastructure: smart conservation for the 21st century. Renewable resources journal, 20(3), 12-17.
  • Brown, R. A., & Hunt III, W. F. (2011). Impacts of media depth on effluent water quality and hydrologic performance of undersized bioretention cells. Journal of Irrigation and Drainage Engineering, 137(3), 132-143.
  • Carpenter, D. D., & Hallam, L. (2010). Influence of planting soil mix characteristics on bioretention cell design and performance. Journal of Hydrologic Engineering, 15(6), 404-416.
  • Center for Neighborhood Technology (CNT) (2010). The Value of Green Infrastructure A Guide to Recognizing Its Economic, Environmental and Social Benefits. 14.04.2021 tarihinde https://www.cnt.org/sites/default/files/publications/CNT_Value-of-Green-Infrastructure.pdf adresinden erişildi.
  • Chen, X., Peltier, E., Sturm, B. S., & Young, C. B. (2013). Nitrogen removal and nitrifying and denitrifying bacteria quantification in a stormwater bioretention system. Water Research, 47(4), 1691-1700.
  • Chow, M. F., Yusop, Z., & Shirazi, S. M. (2013). Storm runoff quality and pollutant loading from commercial, residential, and industrial catchments in the tropic. Environmental monitoring and assessment, 185(10), 8321-8331.
  • Davis A.P., McCuen R.H. (2005). Stormwater Management for Smart Growth, Springer US. Boston, MA. P368.
  • Davis, A. P. (2007). Field performance of bioretention: Water quality. Environmental Engineering Science, 24(8), 1048-1064.
  • Davis, A. P., Hunt, W. F., Traver, R. G., & Clar, M. (2009). Bioretention technology: Overview of current practice and future needs. Journal of environmental engineering, 135(3), 109-117.
  • Davis, A. P., Shokouhian, M., Sharma, H., & Minami, C. (2006). Water quality improvement through bioretention media: Nitrogen and phosphorus removal. Water Environment Research, 78(3), 284-293.
  • Davis, A. P., Shokouhian, M., Sharma, H., Minami, C., & Winogradoff, D. (2003). Water quality improvement through bioretention: Lead, copper, and zinc removal. Water Environment Research, 75(1), 73-82.
  • De Rozari, P., Greenway, M., & El Hanandeh, A. (2018). Nitrogen removal from sewage and septage in constructed wetland mesocosms using sand media amended with biochar. Ecological Engineering, 111, 1-10.
  • Demir D. (2012). Konvansiyonel Yağmursuyu Yönetim Sistemleri ile Sürdürülebilir Yağmursuyu Yönetim Sistemlerinin Karşılaştırılması: İTÜ Ayazağa Yerleşkesi Örneği. Yüksek Lisans Tezi, 2s, İstanbul Teknik Üniversitesi/Fen Bilimleri Enstitüsü, İstanbul.
  • Dietz, M. E. (2007). Low impact development practices: A review of current research and recommendations for future directions. Water, air, and soil pollution, 186(1), 351-363.
  • Dietz, M. E., & Clausen, J. C. (2006). Saturation to improve pollutant retention in a rain garden. Environmental science & technology, 40(4), 1335-1340.
  • EEA (2020). 11.12.2020 tarihinde https://www.eea.europa.eu/themes/water/european-waters/water-use-and-environmental-pressures adresinden erişildi.
  • Ely, M., & Pitman, S. D. (2014). Green Infrastructure: Life support for human habitats. The Compelling Evidence for Incorporating Nature into Urban Environments, Green Infrastructure project, Department of Environment, Water and Natural Resources, Botanic Gardens of South Australia.
  • Fisch, J. (2014). Green Infrastructure and the Sustainability Concept: A Case Study of the Greater New Orleans Urban Water Plan. Master’s thesis: University of New Orleans.
  • Francey, M., Fletcher, T. D., Deletic, A., & Duncan, H. (2010). New insights into the quality of urban storm water in Southeastern Australia. Journal of Environmental Engineering, 136(4), 381-390.
  • Geronimo, F. K. F., Maniquiz-Redillas, M. C., & Kim, L. H. (2013). Treatment of parking lot runoff by a tree box filter. Desalination and water treatment, 51(19-21), 4044-4049.
  • Göbel, P., Dierkes, C., & Coldewey, W. G. (2007). Storm water runoff concentration matrix for urban areas. Journal of contaminant hydrology, 91(1-2), 26-42.
  • Goh, H. W., Lem, K. S., Azizan, N. A., Chang, C. K., Talei, A., Leow, C. S., & Zakaria, N. A. (2019). A review of bioretention components and nutrient removal under different climates—future directions for tropics. Environmental Science and Pollution Research, 26(15), 14904-14919.
  • Gülgün, B., & Yazıcı, K. (2016). Yeşil Altyapı Sistemlerinde Mevcut Uygulamalar. Ziraat Mühendisleri Dergisi, (363), 33–39.
  • Hatt, B. E., Fletcher, T. D., & Deletic, A. (2009). Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. Journal of Hydrology, 365(3-4), 310-321.
  • Hunt, W. F., Jarrett, A. R., Smith, J. T., & Sharkey, L. J. (2006). Evaluating bioretention hydrology and nutrient removal at three field sites in North Carolina. Journal of Irrigation and Drainage Engineering, 132(6), 600-608.
  • Hunt, W. F., Smith, J. T., Jadlocki, S. J., Hathaway, J. M., & Eubanks, P. R. (2008). Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, NC. Journal of Environmental Engineering, 134(5), 403-408.
  • Jiang, C. B., Li, J. K., Zhang, B. H., Ruan, T. S., Li, H. E., & Dong, W. (2018). Design parameters and treatment efficiency of a retrofit bioretention system on runoff nitrogen removal. Environmental Science and Pollution Research, 25(33), 33298-33308.
  • Jiang, C., Li, J., Li, H., Li, Y., & Chen, L. (2017). Field performance of bioretention systems for runoff quantity regulation and pollutant removal. Water, Air, & Soil Pollution, 228(12), 1-13.
  • Jotte, L., Raspati, G. & Azrague, K. (2017). Review of stormwater management practices. Klima 2050 Report 7. Trondheim, 2017. ISBN: 978-82-536-1545-5
  • Kloss, C., Calarusse, C., Stoner, N. (2006). Rooftops to rivers: Green strategies for controlling stormwater and combined sewer overflows. Natural Resources Defense Council, Washington D.C.
  • Kluge, B., Markert, A., Facklam, M., Sommer, H., Kaiser, M., Pallasch, M., & Wessolek, G. (2018). Metal accumulation and hydraulic performance of bioretention systems after long-term operation. Journal of soils and sediments, 18(2), 431-441. LeFevre, G. H., Paus, K. H., Natarajan, P., Gulliver, J. S., Novak, P. J., & Hozalski, R. M. (2015). Review of dissolved pollutants in urban storm water and their removal and fate in bioretention cells. Journal of Environmental Engineering, 141(1), 04014050.
  • Li, L., & Davis, A. P. (2014). Urban stormwater runoff nitrogen composition and fate in bioretention systems. Environmental science & technology, 48(6), 3403-3410.
  • Liu, J., & Davis, A. P. (2014). Phosphorus speciation and treatment using enhanced phosphorus removal bioretention. Environmental science & technology, 48(1), 607-614.
  • Liu, J., Sample, D. J., Bell, C., & Guan, Y. (2014). Review and research needs of bioretention used for the treatment of urban stormwater. Water, 6(4), 1069-1099.
  • Macnamara, J., & Derry, C. (2017). Pollution removal performance of laboratory simulations of Sydney’s street stormwater biofilters. Water, 9(11), 907.
  • Mangangka, I. R., Liu, A., Egodawatta, P., & Goonetilleke, A. (2015). Performance characterisation of a stormwater treatment bioretention basin. Journal of environmental management, 150, 173-178.
  • McLeod, S. M., Kells, J. A., & Putz, G. J. (2006). Urban runoff quality characterization and load estimation in Saskatoon, Canada. Journal of environmental engineering, 132(11), 1470-1481.
  • Nazahiyah, R. (2005). Modeling of non-point source pollution from residential and commercial catchments in Skudai, Johor. Master Thesis, University Technology Malaysia, Malaysia.
  • Passeport, E., Hunt, W. F., Line, D. E., Smith, R. A., & Brown, R. A. (2009). Field study of the ability of two grassed bioretention cells to reduce storm-water runoff pollution. Journal of Irrigation and Drainage Engineering, 135(4), 505-510.
  • Peterson, M. A. (2016). The effect of the antecedent dry conditions on nitrogen removal for a modified bioretention system. Doctoral dissertation, University of South Florida.
  • Prince George’s County, Maryland (PGCM). (2007). Bioretention Manual. Environmental Services Division; Department of Environmental Resources, Prince George’s County: Upper Marlboro, MD, USA. Available online: https://www.princegeorgescountymd.gov/Government/AgencyIndex/DER/ESG/Bioretention/pdf/Bioretention%20Manual_2009%20Version.pdf.
  • Roseen, R. M., Ballestero, T. P., Houle, J. J., Avelleneda, P., Wildey, R., & Briggs, J. (2006). Storm water low-impact development, conventional structural, and manufactured treatment strategies for parking lot runoff: Performance evaluations under varied mass loading conditions. Transportation research record, 1984(1), 135-147. Shakouri N. (2016). Kentlerde Yağmursuyu Yönetimi Kapsamında Yeşil Altyapı peyzaj Planlama ve Tasarım Yaklaşımı: Sakarya-Hendek Örneği. Doktora Tezi, 27s. Ankara Üniversitesi/Fen Bilimleri Enstitüsü, Ankara.
  • Singh, R. P., Zhao, F., Ji, Q., Saravanan, J., & Fu, D. (2019). Design and performance characterization of roadside bioretention systems. Sustainability, 11(7), 2040.
  • Stephan, E. A., & Endreny, T. A. (2016). Weighting nitrogen and phosphorus pixel pollutant loads to represent runoff and buffering likelihoods. JAWRA Journal of the American Water Resources Association, 52(2), 336-349.
  • Van der Tak, L., & Edwards, C. (2001). An ArcView GIS tool to calculate nonpoint sources of pollution in watershed and stormwater projects. USEPA: Washington, DC, USA.
  • Wan, Z., Li, T., & Liu, Y. (2018). Effective nitrogen removal during different periods of a field-scale bioretention system. Environmental Science and Pollution Research, 25(18), 17855-17861.
  • Wang, J., Chua, L. H., & Shanahan, P. (2017). Evaluation of pollutant removal efficiency of a bioretention basin and implications for stormwater management in tropical cities. Environmental Science: Water Research & Technology, 3(1), 78-91.
  • Wrage, N., Velthof, G.L., van Beusichem, M.L., Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide, Soil Biology and Biochemistry, 33(12–13), 1723-1732, ISSN 0038-0717, https://doi.org/10.1016/S0038-0717(01)00096-7.
  • Yang, Y. Y., & Lusk, M. G. (2018). Nutrients in urban stormwater runoff: Current state of the science and potential mitigation options. Current Pollution Reports, 4(2), 112-127.
  • Zhang H, Ahmad Z, Shao Y, Yang Z, Jia Y, Zhong H. (2021). Bioretention for removal of nitrogen: processes, operational conditions, and strategies for improvement. Environmental Science and Pollution Research; 28(9):10519-10535. doi: 10.1007/s11356-020-12319-1. Epub 2021 Jan 14. PMID: 33443738.
  • Zhou, Z., Li, H., Song, C., Cao, X., & Zhou, Y. (2017). Prevalence of ammonia-oxidizing bacteria over ammonia-oxidizing archaea in sediments as related to nutrient loading in Chinese aquaculture ponds. Journal of Soils and Sediments, 17(7), 1928-1938.
There are 56 citations in total.

Details

Primary Language Turkish
Subjects Environmentally Sustainable Engineering
Journal Section Review Article
Authors

Gökçen Bayrak 0000-0002-0423-4731

Cansu Küp 0000-0002-1370-7545

Project Number 2020/76
Publication Date September 15, 2021
Submission Date July 3, 2021
Published in Issue Year 2021

Cite

APA Bayrak, G., & Küp, C. (2021). Yeşil Altyapı Uygulamaları Kapsamında Biyotutma Sistemlerinin Yağmur Suyu Kirletici Giderim Verimlerinin Değerlendirilmesi. Kent Akademisi, 14(3), 853-866. https://doi.org/10.35674/kent.961967

International Refereed and Indexed Journal of Urban Culture and Management | Kent Kültürü ve Yönetimi Uluslararası Hakemli İndeksli Dergi

Bilgi, İletişim, Kültür, Sanat ve Medya Hizmetleri (ICAM Network) www.icamnetwork.net

Executive Office: Ahmet Emin Fidan Culture and Research Center, Evkaf Neigh. No: 34 Fatsa Ordu
Tel: +90452 310 20 30 Faks: +90452 310 20 30 | E-Mail: (int): info@icamnetwork.net | (TR) bilgi@icamnetwork.net