Research Article
BibTex RIS Cite

Mimari Tasarım Sürecinde Çevresel Etki Hesaplanmasında Görsel Programlama Dillerinin (VPL) Kullanılabilirliğinin İrdelenmesi

Year 2022, Volume: 15 Issue: D.Ü. 2. Uluslararası Mimarlık Sempozyumu Özel Sayısı, 72 - 90, 05.08.2022
https://doi.org/10.35674/kent.1013859

Abstract

Birçok bilimsel araştırmaya göre, küresel kaynakların yaklaşık %40’ını tüketen yapı sektörü dünyanın en büyük atık sorumlusu olarak yeryüzünde gerçekleşen sera gazı emisyonlarının yaklaşık yarısından sorumlu tutulmaktadır. Bu durum, yeryüzü sıcaklığının artmasına neden olarak, küresel çapta birçok felaketin kaynağı olan iklim değişikliğini meydana getirmektedir. Günümüzde, sürdürülebilirlik kavramını yapı sektörüne dahil ederek, çevresel etkilerin hesaplanmasında kullanılan metodolojilerin başında gelen Yaşam Döngüsü Değerlendirmesi (Life Cycle Assessment-LCA) yöntemi, bilimsel çalışmalarda sıklıkla kullanılmaktadır. İlk aşamalarında bile uygulanması oldukça zaman alıcı ve maliyetli olan LCA yöntemi, çok farklı kaynaklardan geniş bir veri yelpazesine erişim gerektiren, oldukça veri yoğun bir uygulamadır. Dolayısıyla, tasarım sürecinin iç içe geçmiş ve karmaşık doğasından kaynaklanan zorluklarla sürekli olarak karşı karşıya kalan, yapı planlamasında en önemli karar verici olan mimarlar, çevresel etkinin hesaplanarak tasarım süreciyle bütünleştirilmesi noktasında büyük zorluklar yaşamaktadır. Bu durumun bir sonucu olarak, son yıllarda gerçekleştirilen birçok çalışma LCA sürecinin iyileştirilmesi ve basitleştirilmesine odaklanmıştır. Metin tabanlı programlama dillerinin karmaşıklığı ve kullanmaya yeni başlayanlar için zorluğunun aksine Görsel Programlama Dili (VPL), çok daha kolay ve hızlı yorumlamayı sağlayan görsel öğeler kullanmaktadır. Bu makalede; birçok bilimsel çalışmada ve mimari uygulamada kullanılan iki farklı VPL aracının, uygulandığı esas yazılımlar (Rhinoceros 3D ve Autodesk Revit) çerçevesinde, erken mimari tasarım aşamasında çevresel etkilerin değerlendirilmesine sağladığı katkıların karşılaştırılarak, avantaj ve dezavantajlarının tespit edilmesi hedeflenmiştir. Belirlenen hedef doğrultusunda çalışmada, kapsamlı literatür analizi sonucu elde edilen verilerin kıyaslanarak sentezlendiği bir yöntem uygulanmıştır. Çalışma kapsamında; yapı sektörünün çevresel etkisi, yapı sektöründe özelinde LCA metodolojisi, görsel programlama dili (VPL) kavramı, görsel programlama dillerinin (Grasshopper ve Dynamo) mimari tasarım sürecinde kullanımı ve iki farklı yazılım olan Rhinoceros 3D ve Autodesk Revit içerisinde VPL kullanımının durumu irdelenmiştir. Çalışmanın sonuçları olarak ise; yapı sektörü kaynaklı karbon salınımının azaltılabilmesine yönelik ilk kararların verildiği erken tasarım aşamasında, tasarıma katılan karar verici paydaşlar tarafından kolaylıkla uygulanabilecek, dinamik bir LCA hesaplamasına imkân tanıyan, görsel programlama dili destekli (VPL) çevresel etki hesaplamasının önemi elde edilmiştir.

References

  • Autodesk. (2021). What's New in Dynamo for Revit 2.12 (Autodesk support and learning). https://autode.sk/3CMCayv [Erişim Tarihi: 26.09.2021].
  • Basbagill, J., Flager, F., Lepech, M., & Fischer, M. (2013). Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Building and Environment, 60, 81-92. https://doi.org/https://doi.org/10.1016/j.buildenv.2012.11.009.
  • Basic, S., Hollberg, A., Galimshina, A., & Habert, G. (2019). A design integrated parametric tool for real-time Life Cycle Assessment – Bombyx project. IOP Conference Series: Earth and Environmental Science, 323. https://doi.org/10.1088/1755-1315/323/1/012112.
  • Bombyx-ETH. (2021). Bombyx-Real-time Life Cycle Assessment parametric tool for calculating CO2 impact. https://github.com/Bombyx-ETH/Bombyx2 [Erişim Tarihi: 28.09.2021].
  • Bruce-Hyrkäs, T. (2021). Building Life Cycle Assessment White Paper-Discover why you need LCA to build sustainably. https://www.oneclicklca.com/building-life-cycle-assessment-white-paper/ [Erişim Tarihi: 15.03.2021].
  • Bueno, P. C., Vassallo, J. M., & Cheung, K. (2015). Sustainability Assessment of Transport Infrastructure Projects: A Review of Existing Tools and Methods. Transport Reviews, 35(5), 622-649. https://doi.org/10.1080/01441647.2015.1041435.
  • CardinalLCA. (2021). Early-stage impact assessment tool. https://www.cardinallca.com/tool.html [Erişim Tarihi: 29.09.2021].
  • EeBGuideProject. (2015). EeBGuide Guidance Document Part B: Buildings. Operational guidance for life cycle assessment studies of the Energy Efficient Building Initiative. http://oro.open.ac.uk/59998/ [Erişim Tarihi: 09.06.2021].
  • food4rhino. (2021). Apps for Rhino and Grasshopper (Plug-in Community Service by McNeel). https://www.food4rhino.com/en [Erişim Tarihi: 27.09.2021].
  • Gomaa, M., Farghaly, T., & El Sayad, Z. (2021). Optimizing A Life Cycle Assessment-Based Design Decision Support System Towards Eco-Conscious Architecture Computational Methods and Experimental Measurements XX, http://dx.doi.org/10.2495/cmem210041.
  • Ilhan, B., & Yaman, H. (2016). Green building assessment tool (GBAT) for integrated BIM-based design decisions. Automation in Construction, 70, 26-37. https://doi.org/https://doi.org/10.1016/j.autcon.2016.05.001. Kensek, K. (2015). Visual programming for building information modeling: Energy and shading analysis case studies. Journal of Green Building, 10, 28-43. https://doi.org/10.3992/jgb.10.4.28.
  • Khasreen, M. M., Banfill, P. F. G., & Menzies, G. F. (2009). Life-Cycle Assessment and the Environmental Impact of Buildings: A Review. Sustainability, 1(3). https://doi.org/10.3390/su1030674.
  • Kiamili, C., Hollberg, A., & Habert, G. (2020). Detailed Assessment of Embodied Carbon of HVAC Systems for a New Office Building Based on BIM. Sustainability, 12, 3372. https://doi.org/10.3390/su12083372.
  • Ladybug. (2021). What is Ladybug Tools? https://www.ladybug.tools/ [Erişim Tarihi: 29.09.2021].
  • Lasvaux, S., Gantner, J., Wittstock, B., Bazzana, M., Schiopu, N., Saunders, T., & Gazulla, C. (2014). Achieving consistency in life cycle assessment practice within the European construction sector: the role of the EeBGuide InfoHub. The International Journal of Life Cycle Assessment, 19(11), 1783-1793. https://doi.org/10.1007/s11367-014-0786-2.
  • Meex, E., Hollberg, A., Knapen, E., Hildebrand, L., & Verbeeck, G. (2018). Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Building and Environment, 133, 228-236. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.02.016.
  • MODENA. (2021). The top 5 reasons to use Dynamo (Modena Autodesk Platinum Partner). https://www.modena-aec.co.za/the-top-5-reasons-to-use-dynamo/ [Erişim Tarihi: 26.09.2021].
  • Pan, W., & Teng, Y. (2021). A systematic investigation into the methodological variables of embodied carbon assessment of buildings. Renewable and Sustainable Energy Reviews, 141, 110840. https://doi.org/https://doi.org/10.1016/j.rser.2021.110840.
  • Reizgevicius, M., Ustinovičius, L., Cibulskiene, D., Kutut, V., & Nazarko, L. (2018). Promoting Sustainability through Investment in Building Information Modeling (BIM) Technologies: A Design Company Perspective. Sustainability, 10, 600. https://doi.org/10.3390/su10030600.
  • Rhino3D. (2021). Rhinoceros Features Overview. https://www.rhino3d.com/features/#grasshopper [Erişim Tarihi: 27.09.2021].
  • Seghier, T., Lim, Y.-W., Ahmad, M., & Williams, O. (2017). Building Envelope Thermal Performance Assessment Using Visual Programming and BIM, based on ETTV requirement of Green Mark and GreenRE. International Journal of Built Environment and Sustainability, 4. https://doi.org/10.11113/ijbes.v4.n3.216.
  • SOLEMMA. (2021). ClimateStudio-Advanced daylighting, electric lighting, and conceptual thermal analysis. https://www.solemma.com/climatestudio [Erişim Tarihi: 29.09.2021].
  • Stavric, M., & Marina, O. (2011). Parametric modeling for advanced architecture. International Journal of Applied Mathematics and Informatics, 5, 9-16.
  • Succar, B. (2009). Building information modelling framework: A research and delivery foundation for industry stakeholders. Automation in Construction, 18(3), 357-375. https://doi.org/https://doi.org/10.1016/j.autcon.2008.10.003.
  • UNEP. (2020). 2020 Global Status Report For Buıldings And Construction: Towards a zero-emissions, efficient and resilient buildings and construction sector. https://globalabc.org/sites/default/files/inline-files/2020%20Buildings%20GSR_FULL%20REPORT.pdf [Erişim Tarihi: 11.06.2021].
  • UnitedBIM. (2021). Leading Countries With BIM Adoption. https://www.united-bim.com/leading-countries-with-bim-adoption/ [Erişim Tarihi: 02.10.2021].
  • Zepeda, J. O. (2016). Tortuga Plugin as tool in the first steps of architectural design for an increased consciousness of the impact of buildings on the environment. Hochschule Augsburg (Augsburg Uygulamalı Bilimler Üniversitesi).

Examinaton of the Usage of Visual Programming Languages (VPL) in Calculation of Environmental Impact in the Architectural Design Process

Year 2022, Volume: 15 Issue: D.Ü. 2. Uluslararası Mimarlık Sempozyumu Özel Sayısı, 72 - 90, 05.08.2022
https://doi.org/10.35674/kent.1013859

Abstract

According to many scientific studies, the construction sector, which consumes about 40% of global resources, is responsible for about half of the greenhouse gas emissions on earth as the world's largest waste maker. This situation creates climate change, which is the source of many disasters on a global scale, by causing the earth’s temperature to increase. Today, the Life Cycle Assessment (LCA) method, which is one of the leading methodologies used in calculating environmental impacts by incorporating the concept of sustainability into the construction sector, is frequently used in scientific studies. LCA method, which is very time-consuming and costly to implement even in its early stages, is a very data-intensive application that requires access to a wide range of data from many different sources. Therefore, architects, who are the most critical decision-makers in construction planning, and who are constantly faced with the challenges arising from the intertwined and complex nature of the design process, have great difficulties in calculating the environmental impact and integrating it into the design process. As a result of this situation, many studies in recent years have focused on improving and simplifying the LCA process. Contrary to the complexity and difficulty for beginners with text-based programming languages, Visual Programming Language (VPL) uses visual elements that make interpretation much easier and faster. This study aimed to determine the advantages and disadvantages of two different VPL tools used in many scientific studies and architectural applications, by comparing their contributions to the evaluation of environmental impacts at the early architectural design stage, taking into account the main software (Rhinoceros 3D and Autodesk Revit). In line with the determined target, a method in which the data obtained as a result of comprehensive literature analysis was synthesized by comparing was applied. Scope of work; The environmental impact and current situation of the building industry, the LCA methodology in the building industry, the concept of visual programming language (VPL), the use of visual programming languages (Grasshopper and Dynamo) in the architectural design process, and VPL in two different software Rhinoceros 3D and Autodesk Revit usage has been examined. As the results of the study, the importance of visual programming language supported (VPL) environmental impact calculation, which allows a dynamic LCA calculation that can be easily applied by the decision-making stakeholders participating in the design, has been gained in the early design phase, where the first decisions are made to reduce carbon emissions from the building sector.

References

  • Autodesk. (2021). What's New in Dynamo for Revit 2.12 (Autodesk support and learning). https://autode.sk/3CMCayv [Erişim Tarihi: 26.09.2021].
  • Basbagill, J., Flager, F., Lepech, M., & Fischer, M. (2013). Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Building and Environment, 60, 81-92. https://doi.org/https://doi.org/10.1016/j.buildenv.2012.11.009.
  • Basic, S., Hollberg, A., Galimshina, A., & Habert, G. (2019). A design integrated parametric tool for real-time Life Cycle Assessment – Bombyx project. IOP Conference Series: Earth and Environmental Science, 323. https://doi.org/10.1088/1755-1315/323/1/012112.
  • Bombyx-ETH. (2021). Bombyx-Real-time Life Cycle Assessment parametric tool for calculating CO2 impact. https://github.com/Bombyx-ETH/Bombyx2 [Erişim Tarihi: 28.09.2021].
  • Bruce-Hyrkäs, T. (2021). Building Life Cycle Assessment White Paper-Discover why you need LCA to build sustainably. https://www.oneclicklca.com/building-life-cycle-assessment-white-paper/ [Erişim Tarihi: 15.03.2021].
  • Bueno, P. C., Vassallo, J. M., & Cheung, K. (2015). Sustainability Assessment of Transport Infrastructure Projects: A Review of Existing Tools and Methods. Transport Reviews, 35(5), 622-649. https://doi.org/10.1080/01441647.2015.1041435.
  • CardinalLCA. (2021). Early-stage impact assessment tool. https://www.cardinallca.com/tool.html [Erişim Tarihi: 29.09.2021].
  • EeBGuideProject. (2015). EeBGuide Guidance Document Part B: Buildings. Operational guidance for life cycle assessment studies of the Energy Efficient Building Initiative. http://oro.open.ac.uk/59998/ [Erişim Tarihi: 09.06.2021].
  • food4rhino. (2021). Apps for Rhino and Grasshopper (Plug-in Community Service by McNeel). https://www.food4rhino.com/en [Erişim Tarihi: 27.09.2021].
  • Gomaa, M., Farghaly, T., & El Sayad, Z. (2021). Optimizing A Life Cycle Assessment-Based Design Decision Support System Towards Eco-Conscious Architecture Computational Methods and Experimental Measurements XX, http://dx.doi.org/10.2495/cmem210041.
  • Ilhan, B., & Yaman, H. (2016). Green building assessment tool (GBAT) for integrated BIM-based design decisions. Automation in Construction, 70, 26-37. https://doi.org/https://doi.org/10.1016/j.autcon.2016.05.001. Kensek, K. (2015). Visual programming for building information modeling: Energy and shading analysis case studies. Journal of Green Building, 10, 28-43. https://doi.org/10.3992/jgb.10.4.28.
  • Khasreen, M. M., Banfill, P. F. G., & Menzies, G. F. (2009). Life-Cycle Assessment and the Environmental Impact of Buildings: A Review. Sustainability, 1(3). https://doi.org/10.3390/su1030674.
  • Kiamili, C., Hollberg, A., & Habert, G. (2020). Detailed Assessment of Embodied Carbon of HVAC Systems for a New Office Building Based on BIM. Sustainability, 12, 3372. https://doi.org/10.3390/su12083372.
  • Ladybug. (2021). What is Ladybug Tools? https://www.ladybug.tools/ [Erişim Tarihi: 29.09.2021].
  • Lasvaux, S., Gantner, J., Wittstock, B., Bazzana, M., Schiopu, N., Saunders, T., & Gazulla, C. (2014). Achieving consistency in life cycle assessment practice within the European construction sector: the role of the EeBGuide InfoHub. The International Journal of Life Cycle Assessment, 19(11), 1783-1793. https://doi.org/10.1007/s11367-014-0786-2.
  • Meex, E., Hollberg, A., Knapen, E., Hildebrand, L., & Verbeeck, G. (2018). Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Building and Environment, 133, 228-236. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.02.016.
  • MODENA. (2021). The top 5 reasons to use Dynamo (Modena Autodesk Platinum Partner). https://www.modena-aec.co.za/the-top-5-reasons-to-use-dynamo/ [Erişim Tarihi: 26.09.2021].
  • Pan, W., & Teng, Y. (2021). A systematic investigation into the methodological variables of embodied carbon assessment of buildings. Renewable and Sustainable Energy Reviews, 141, 110840. https://doi.org/https://doi.org/10.1016/j.rser.2021.110840.
  • Reizgevicius, M., Ustinovičius, L., Cibulskiene, D., Kutut, V., & Nazarko, L. (2018). Promoting Sustainability through Investment in Building Information Modeling (BIM) Technologies: A Design Company Perspective. Sustainability, 10, 600. https://doi.org/10.3390/su10030600.
  • Rhino3D. (2021). Rhinoceros Features Overview. https://www.rhino3d.com/features/#grasshopper [Erişim Tarihi: 27.09.2021].
  • Seghier, T., Lim, Y.-W., Ahmad, M., & Williams, O. (2017). Building Envelope Thermal Performance Assessment Using Visual Programming and BIM, based on ETTV requirement of Green Mark and GreenRE. International Journal of Built Environment and Sustainability, 4. https://doi.org/10.11113/ijbes.v4.n3.216.
  • SOLEMMA. (2021). ClimateStudio-Advanced daylighting, electric lighting, and conceptual thermal analysis. https://www.solemma.com/climatestudio [Erişim Tarihi: 29.09.2021].
  • Stavric, M., & Marina, O. (2011). Parametric modeling for advanced architecture. International Journal of Applied Mathematics and Informatics, 5, 9-16.
  • Succar, B. (2009). Building information modelling framework: A research and delivery foundation for industry stakeholders. Automation in Construction, 18(3), 357-375. https://doi.org/https://doi.org/10.1016/j.autcon.2008.10.003.
  • UNEP. (2020). 2020 Global Status Report For Buıldings And Construction: Towards a zero-emissions, efficient and resilient buildings and construction sector. https://globalabc.org/sites/default/files/inline-files/2020%20Buildings%20GSR_FULL%20REPORT.pdf [Erişim Tarihi: 11.06.2021].
  • UnitedBIM. (2021). Leading Countries With BIM Adoption. https://www.united-bim.com/leading-countries-with-bim-adoption/ [Erişim Tarihi: 02.10.2021].
  • Zepeda, J. O. (2016). Tortuga Plugin as tool in the first steps of architectural design for an increased consciousness of the impact of buildings on the environment. Hochschule Augsburg (Augsburg Uygulamalı Bilimler Üniversitesi).
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Architecture, Environmentally Sustainable Engineering
Journal Section Research Article
Authors

Mehmet Oğuz Duru 0000-0002-0583-0439

Sevde Gülizar Dinçer 0000-0002-5300-8466

İlhan Koç 0000-0002-4864-6906

Publication Date August 5, 2022
Submission Date October 23, 2021
Published in Issue Year 2022 Volume: 15 Issue: D.Ü. 2. Uluslararası Mimarlık Sempozyumu Özel Sayısı

Cite

APA Duru, M. O., Dinçer, S. G., & Koç, İ. (2022). Mimari Tasarım Sürecinde Çevresel Etki Hesaplanmasında Görsel Programlama Dillerinin (VPL) Kullanılabilirliğinin İrdelenmesi. Kent Akademisi, 15(D.Ü. 2. Uluslararası Mimarlık Sempozyumu Özel Sayısı), 72-90. https://doi.org/10.35674/kent.1013859

International Refereed and Indexed Journal of Urban Culture and Management | Kent Kültürü ve Yönetimi Uluslararası Hakemli İndeksli Dergi
Information, Communication, Culture, Art and Media Services (ICAM Network) | www.icamnetwork.net
Address: Ahmet Emin Fidan Culture and Research Center, Evkaf Neigh. No: 34 Fatsa Ordu
Tel: +90452 310 20 30 Faks: +90452 310 20 30 | E-Mail: (int): info@icamnetwork.net | (TR) bilgi@icamnetwork.net