Research Article
BibTex RIS Cite

Alan Kullanım Türlerinin Yer Yüzey Sıcaklığı Verileri ile Zamansal Değişiminin Belirlenmesi (Erzurum Kenti Örneği)

Year 2023, Volume: 16 Issue: 2, 1334 - 1361, 15.06.2023
https://doi.org/10.35674/kent.1200305

Abstract

Kentleşmenin artmasıyla beraber, alan kullanım biçimleri değişmekte, bu değişim yerel ve bölgesel iklimin de değişimine neden olmaktadır. Oluşan kentsel ısı adaları kentlerde yaşayan insanların yaşam kalitesini etkilemektedir. Alan kullanımında meydana gelen dönüşüm ve buna bağlı olarak gerçekleşen sıcaklık değişimini belirlemek amacıyla gerçekleştirilen bu çalışma, Erzurum kent merkezinde yürütülmüştür. Çalışmada, 1991 ve 2020 yıllarına ait uydu görüntüleri incelenmiştir. 1991 yılında kentsel alan yaklaşık 15.5 km2 iken, 2020 yılında 40.8 km2’ye ulaşmıştır. Kentin 1991 yılı ortalama YYS değeri 26,7 °C, 2020 yılı ortalama YYS değeri 30,4 °C olarak bulunmuştur. 1991 yılına ait sıcaklık verileri üzerinden değerlendirme yapıldığında kent merkezinin % 49‘u ortalamanın üzerinde, 2020 yılında ise % 55’i ortalamanın üzerinde olduğu bulunmuştur. 2020 kentleşmiş alanda 25003 yapının % 71’i mesken amaçlı kullanılmaktadır. Buna göre nüfusun % 58,8’i kentin YYS fark ortalamasının üzerinde yaşadığı tahmin edilmektedir. Alansal açıdan bakıldığında ise 2020 kentsel alanının % 52.58’i ortalamanın üstünde, % 47.41’i ortalamanın altında kalmaktadır. Alan kullanım biçiminin türü ve alan kullanım biçimindeki değişiklik kentsel ısı adasına etki etmektedir. 2019 yılı Urban Atlas verilerine göre alan kullanım biçimlerine bağlı olarak değişen sıcaklık durumlarına bakıldığında ise, işlenmemiş tarım alanları, bitki örtüsünün az ya da olmadığı alanlar, mevcut kullanımı olmayan alanlar, mera alanları, sanayi ve sürekli kentsel alanların YYS ortalamasının fazla olduğu bulunmuştur. Ormanlar, kent içindeki aktif ve pasif yeşil alanlar, maki veya otsu bitkiler ve sürekli ürün işlenen tarım alanları ise düşük sıcaklığa sahiptir.

References

  • Amir, S., Iqbal, K. M. J., Shah, A. A., Saqib, Z., Akhtar, N., Ullah, W., ve Tariq, M. A. U. R. (2022). Analysis of Land Surface Temperature Dynamics in Islamabad by Using MODIS Remote Sensing Data. Sustainability, 14(16), 1-15.
  • Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology: a Journal of the Royal Meteorological Society, 23(1), 1-26.
  • Arsiso, B. K., Tsidu, G. M., Stoffberg, G. H., ve Tadesse, T. (2018). Influence of urbanization-driven land use/cover change on climate: The case of Addis Ababa, Ethiopia. Physics and Chemistry of the Earth, Parts A/B/C, 105, 212-223.
  • Athick, A. M. A., Shankar, K., ve Naqvi, H. R. (2019). Data on time series analysis of land surface temperature variation in response to vegetation indices in twelve Wereda of Ethiopia using mono window, split window algorithm and spectral radiance model. Data in brief, 27, 104773.
  • Barbieri, T., Despini, F., ve Teggi, S. (2018). A multi-temporal analyses of Land Surface Temperature using Landsat-8 data and open source software: The case study of Modena, Italy. Sustainability, 10(5), 1678.
  • Bart, I. L. (2010). Urban sprawl and climate change: A statistical exploration of cause and effect, with policy options for the EU. Land use policy, 27(2), 283-292.
  • Buyantuyev, A., ve Wu, J. (2012). Urbanization diversifies land surface phenology in arid environments: interactions among vegetation, climatic variation, and land use pattern in the Phoenix metropolitan region, USA. Landscape and Urban Planning, 105(1-2), 149-159.
  • Cai, G., Du, M., ve Xue, Y. (2011). Monitoring of urban heat island effect in Beijing combining ASTER and TM data. International Journal of Remote Sensing, 32(5), 1213-1232.
  • Chang, C. R., ve Li, M. H. (2014). Effects of urban parks on the local urban thermal environment. Urban Forestry ve Urban Greening, 13(4), 672-681.
  • Dengiz, O., Turan, İ. D., Özkan, B. (2019). Erzurum ili temel coğrafi özellikleri ve potansiyel işlemeli tarım alanı varlığı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(2), 136-152.
  • Dimoudi, A., ve Nikolopoulou, M. (2003). Vegetation in the urban environment: microclimatic analysis and benefits. Energy and buildings, 35(1), 69-76.
  • Dissanayake, D. M. S. L. B., Morimoto, T., Murayama, Y., ve Ranagalage, M. (2019). Impact of landscape structure on the variation of land surface temperature in sub-saharan region: A case study of Addis Ababa using Landsat data (1986–2016). Sustainability, 11(8), 2257.
  • Doick, K. J., Peace, A., ve Hutchings, T. R. (2014). The role of one large greenspace in mitigating London's nocturnal urban heat island. Science of the total environment, 493, 662-671.
  • Dos Santos, A. R., de Oliveira, F. S., da Silva, A. G., Gleriani, J. M., Gonçalves, W., Moreira, G. L., ... ve Mota, P. H. S. (2017). Spatial and temporal distribution of urban heat islands. Science of the Total Environment, 605, 946-956.
  • Elsayed, I. S. (2012). Effects of population density and land management on the intensity of urban heat islands: A case study on the city of Kuala Lumpur, Malaysia. Application of geographic information systems, 267-283.
  • Environmental Protection Agency (EPA), (2018). Reducing Urban Heat Islands: Compendium of Strategies. Heat Island Reduction Activities; EPA: Washington, DC, USA,
  • Estoque, R. C., ve Murayama, Y. (2014). Measuring sustainability based upon various perspectives: A case study of a hill station in Southeast Asia. Ambio, 43(7), 943-956.
  • Ferreira, M. J., de Oliveira, A. P., ve Soares, J. (2013). Diurnal variation in stored energy flux in São Paulo city, Brazil. Urban Climate, 5, 36-51.
  • Feyisa, G. L., Dons, K., ve Meilby, H. (2014). Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landscape and urban planning, 123, 87-95.
  • Gazi, M., Rahman, M., Uddin, M., ve Rahman, F. M. (2021). Spatio-temporal dynamic land cover changes and their impacts on the urban thermal environment in the Chittagong metropolitan area, Bangladesh. GeoJournal, 86(5), 2119-2134.
  • Gedzelman, S. D., Austin, S., Cermak, R., Stefano, N., Partridge, S., Quesenberry, S., ve Robinson, D. A. (2003). Mesoscale aspects of the urban heat island around New York City. Theoretical and applied climatology, 75(1), 29-42.
  • Gill, S. E., Handley, J. F., Ennos, A. R., ve Pauleit, S. (2007). Adapting cities for climate change: the role of the green infrastructure. Built environment, 33(1), 115-133.
  • Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., ve Briggs, J. M. (2008). Global change and the ecology of cities. science, 319(5864), 756-760.
  • Gunawardena, K. R., Wells, M. J., ve Kershaw, T. (2017). Utilising green and bluespace to mitigate urban heat island intensity. Science of the Total Environment, 584, 1040-1055.
  • Hamada, S., ve Ohta, T. (2010). Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban forestry ve urban greening, 9(1), 15-24.
  • Hou, H., Su, H., Liu, K., Li, X., Chen, S., Wang, W., ve Lin, J. (2022). Driving forces of UHI changes in China's major cities from the perspective of land surface energy balance. Science of The Total Environment, 829, 154710.
  • Huang, C. H., ve Lin, P. Y. (2013). The influence of evapotranspiration by urban greenery on thermal environment in urban microclimate. International Review for Spatial Planning and Sustainable Development, 1(4), 1-12.
  • Jauregui, E. (1997). Heat island development in Mexico City. Atmospheric Environment, 31(22), 3821-3831.
  • Jin, M. S., Kessomkiat, W., ve Pereira, G. (2011). Satellite-observed urbanization characters in Shanghai, China: Aerosols, urban heat island effect, and land–atmosphere interactions. Remote Sensing, 3(1), 83-99.
  • Jun, C., Ban, Y., ve Li, S. (2014). Open access to Earth land-cover map. Nature, 514(7523), 434-434.
  • Kong, F., Yin, H., James, P., Hutyra, L. R., ve He, H. S. (2014). Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landscape and Urban Planning, 128, 35-47.
  • Krehbiel, C. P., Jackson, T., ve Henebry, G. M. (2015). Web-enabled Landsat data time series for monitoring urban heat island impacts on land surface phenology. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5), 2043-2050.
  • Lemonsu, A., Viguie, V., Daniel, M., ve Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate, 14, 586-605.
  • Li, X., Zhou, W., ve Ouyang, Z. (2013). Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution?. Landscape and Urban Planning, 114, 1-8.
  • Li, J., Song, C., Cao, L., Zhu, F., Meng, X., ve Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote sensing of environment, 115(12), 3249-3263.
  • Lin, B. S., ve Lin, C. T. (2016). Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban Forestry ve Urban Greening, 20, 348-357.
  • Morabito, M., Crisci, A., Messeri, A., Orlandini, S., Raschi, A., Maracchi, G., ve Munafò, M. (2016). The impact of built-up surfaces on land surface temperatures in Italian urban areas. Science of the Total Environment, 551, 317-326.
  • Muster, S., Langer, M., Abnizova, A., Young, K. L., ve Boike, J. (2015). Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes. Remote sensing of environment, 168, 1-12.
  • Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment (1967), 7(8), 769-779.
  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24.
  • Park, J., Kim, J. H., Lee, D. K., Park, C. Y., ve Jeong, S. G. (2017). The influence of small green space type and structure at the street level on urban heat island mitigation. Urban forestry ve urban greening, 21, 203-212.
  • Peng, J., Xie, P., Liu, Y., ve Ma, J. (2016). Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sensing of Environment, 173, 145-155.
  • Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F. M., ... ve Myneni, R. B. (2012). Surface urban heat island across 419 global big cities. Environmental science ve technology, 46(2), 696-703.
  • Priyankara, P., Ranagalage, M., Dissanayake, D. M. S. L. B., Morimoto, T., ve Murayama, Y. (2019). Spatial process of surface urban heat island in rapidly growing Seoul metropolitan area for sustainable urban planning using Landsat data (1996–2017). Climate, 7(9), 110.
  • Stabler, L. B., Martin, C. A., ve Brazel, A. J. (2005). Microclimates in a desert city were related to land use and vegetation index. Urban forestry ve urban greening, 3(3-4), 137-147.
  • Steeneveld, G. J., Koopmans, S., Heusinkveld, B. G., ve Theeuwes, N. E. (2014). Refreshing the role of open water surfaces on mitigating the maximum urban heat island effect. Landscape and Urban Planning, 121, 92-96.
  • Streiling, S., ve Matzarakis, A. (2003). Influence of single and small clusters of trees on the bioclimate of a city: a case study. Journal of Arboriculture, 29(6), 309-316.
  • Tan, M., ve Li, X. (2015). Quantifying the effects of settlement size on urban heat islands in fairly uniform geographic areas. Habitat International, 49, 100-106.
  • Tran, H., Uchihama, D., Ochi, S., ve Yasuoka, Y. (2006). Assessment with satellite data of the urban heat island effects in Asian mega cities. International journal of applied Earth observation and Geoinformation, 8(1), 34-48.
  • United Nations, U. N. (2014). World urbanization prospects, the 2011 revision. Population Division, department of economic and social affairs, United Nations Secretariat.
  • Voogt, J. A., ve Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote sensing of environment, 86(3), 370-384.
  • Wong, N. H., ve Yu, C. (2005). Study of green areas and urban heat island in a tropical city. Habitat international, 29(3), 547-558.
  • Xiang, Y., Ye, Y., Peng, C., Teng, M., ve Zhou, Z. (2022). Seasonal variations for combined effects of landscape metrics on land surface temperature (LST) and aerosol optical depth (AOD). Ecological Indicators, 138, 108810.
  • Xu, J., Wei, Q., Huang, X., Zhu, X., ve Li, G. (2010). Evaluation of human thermal comfort near urban waterbody during summer. Building and environment, 45(4), 1072-1080.
  • Yao, R., Wang, L., Huang, X., Niu, Z., Liu, F., ve Wang, Q. (2017). Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. Science of the Total Environment, 609, 742-754.
  • Yildiz ND, Avdan U, Yilmaz S (2013) Analyze of climate features with thermal band in Çoruh River’s Valley Base. In: 6th atmospheric science symposium – ATMOS, 24–26 April. Oral Presentation, ITU, İstanbul
  • Yüksel, Ü., ve Yılmaz, O. (2008). A study on determining and evaluating summertime urban heat islands in Ankara at regional and local scale utilizing remote sensing and meteorological data. Journal of the Faculty of Engineering and Architecture of Gazi University, 23(4).
  • Zhang, H., Qi, Z. F., Ye, X. Y., Cai, Y. B., Ma, W. C., ve Chen, M. N. (2013). Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Applied Geography, 44, 121-133.
  • Zhang, K., Wang, R., Shen, C., ve Da, L. (2010). Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China. Environmental monitoring and assessment, 169(1), 101-112.
  • Zhao, M., Cai, H., Qiao, Z., ve Xu, X. (2016). Influence of urban expansion on the urban heat island effect in Shanghai. International Journal of Geographical Information Science, 30(12), 2421-2441.
  • Zhou, B., Rybski, D., ve Kropp, J. P. (2013). On the statistics of urban heat island intensity. Geophysical research letters, 40(20), 5486-5491. Zhou, D., Zhao, S., Zhang, L., Sun, G., ve Liu, Y. (2015). The footprint of urban heat island effect in China. Scientific reports, 5(1), 1-11.
  • Zhou, W., Huang, G., ve Cadenasso, M. L. (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and urban planning, 102(1), 54-63.
  • Zhu, W., Lű, A., ve Jia, S. (2013). Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sensing of Environment, 130, 62-73.

Determining The Change of Land Use Types by Years with Land Surface Temperature Data (Erzurum City Case Study)

Year 2023, Volume: 16 Issue: 2, 1334 - 1361, 15.06.2023
https://doi.org/10.35674/kent.1200305

Abstract

Urbanization changes the use of land, and this change also causes changes in the local and regional climate. Urban heat islands affect the quality of life of people living in cities. This study, which was carried out in order to determine the transformation in the land use and the resulting temperature change, was carried out in the city center of Erzurum. Satellite images of 1991 and 2020 were examined. While the urban area was approximately 15.5 km2 in 1991, it reached 40.8 km2 in 2020. The average land surface temperature of the city in 1991 was 26.7 °C, and the average land surface temperature in 2020 was 30.4 °C. the temperature data of 1991, it was found that 49% of the city center was above the average, and in 2020, 55% was above the average. 71% of 25003 buildings in the 2020 urbanized area are used for residential purposes. According to this, it is estimated that 58.8% of the population lives above the land surface temperature difference average of the city. From a spatial perspective, 52.58% of the 2020 urban area is above the average and 47.41% is below the average. The type of land use and the change affect the urban heat island. According to the Urban Atlas data of 2019, when the temperature conditions changing depending on the land use patterns are examined, unprocessed agriculture, areas with little or no vegetation, areas with no current use, pasture areas, it has been found that the average temperature of industrial and urban areas is higher. Forests, active and passive green areas in the city, scrubs or herbaceous plants and agricultural areas where crops are constantly processed have low temperatures.

References

  • Amir, S., Iqbal, K. M. J., Shah, A. A., Saqib, Z., Akhtar, N., Ullah, W., ve Tariq, M. A. U. R. (2022). Analysis of Land Surface Temperature Dynamics in Islamabad by Using MODIS Remote Sensing Data. Sustainability, 14(16), 1-15.
  • Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology: a Journal of the Royal Meteorological Society, 23(1), 1-26.
  • Arsiso, B. K., Tsidu, G. M., Stoffberg, G. H., ve Tadesse, T. (2018). Influence of urbanization-driven land use/cover change on climate: The case of Addis Ababa, Ethiopia. Physics and Chemistry of the Earth, Parts A/B/C, 105, 212-223.
  • Athick, A. M. A., Shankar, K., ve Naqvi, H. R. (2019). Data on time series analysis of land surface temperature variation in response to vegetation indices in twelve Wereda of Ethiopia using mono window, split window algorithm and spectral radiance model. Data in brief, 27, 104773.
  • Barbieri, T., Despini, F., ve Teggi, S. (2018). A multi-temporal analyses of Land Surface Temperature using Landsat-8 data and open source software: The case study of Modena, Italy. Sustainability, 10(5), 1678.
  • Bart, I. L. (2010). Urban sprawl and climate change: A statistical exploration of cause and effect, with policy options for the EU. Land use policy, 27(2), 283-292.
  • Buyantuyev, A., ve Wu, J. (2012). Urbanization diversifies land surface phenology in arid environments: interactions among vegetation, climatic variation, and land use pattern in the Phoenix metropolitan region, USA. Landscape and Urban Planning, 105(1-2), 149-159.
  • Cai, G., Du, M., ve Xue, Y. (2011). Monitoring of urban heat island effect in Beijing combining ASTER and TM data. International Journal of Remote Sensing, 32(5), 1213-1232.
  • Chang, C. R., ve Li, M. H. (2014). Effects of urban parks on the local urban thermal environment. Urban Forestry ve Urban Greening, 13(4), 672-681.
  • Dengiz, O., Turan, İ. D., Özkan, B. (2019). Erzurum ili temel coğrafi özellikleri ve potansiyel işlemeli tarım alanı varlığı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(2), 136-152.
  • Dimoudi, A., ve Nikolopoulou, M. (2003). Vegetation in the urban environment: microclimatic analysis and benefits. Energy and buildings, 35(1), 69-76.
  • Dissanayake, D. M. S. L. B., Morimoto, T., Murayama, Y., ve Ranagalage, M. (2019). Impact of landscape structure on the variation of land surface temperature in sub-saharan region: A case study of Addis Ababa using Landsat data (1986–2016). Sustainability, 11(8), 2257.
  • Doick, K. J., Peace, A., ve Hutchings, T. R. (2014). The role of one large greenspace in mitigating London's nocturnal urban heat island. Science of the total environment, 493, 662-671.
  • Dos Santos, A. R., de Oliveira, F. S., da Silva, A. G., Gleriani, J. M., Gonçalves, W., Moreira, G. L., ... ve Mota, P. H. S. (2017). Spatial and temporal distribution of urban heat islands. Science of the Total Environment, 605, 946-956.
  • Elsayed, I. S. (2012). Effects of population density and land management on the intensity of urban heat islands: A case study on the city of Kuala Lumpur, Malaysia. Application of geographic information systems, 267-283.
  • Environmental Protection Agency (EPA), (2018). Reducing Urban Heat Islands: Compendium of Strategies. Heat Island Reduction Activities; EPA: Washington, DC, USA,
  • Estoque, R. C., ve Murayama, Y. (2014). Measuring sustainability based upon various perspectives: A case study of a hill station in Southeast Asia. Ambio, 43(7), 943-956.
  • Ferreira, M. J., de Oliveira, A. P., ve Soares, J. (2013). Diurnal variation in stored energy flux in São Paulo city, Brazil. Urban Climate, 5, 36-51.
  • Feyisa, G. L., Dons, K., ve Meilby, H. (2014). Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landscape and urban planning, 123, 87-95.
  • Gazi, M., Rahman, M., Uddin, M., ve Rahman, F. M. (2021). Spatio-temporal dynamic land cover changes and their impacts on the urban thermal environment in the Chittagong metropolitan area, Bangladesh. GeoJournal, 86(5), 2119-2134.
  • Gedzelman, S. D., Austin, S., Cermak, R., Stefano, N., Partridge, S., Quesenberry, S., ve Robinson, D. A. (2003). Mesoscale aspects of the urban heat island around New York City. Theoretical and applied climatology, 75(1), 29-42.
  • Gill, S. E., Handley, J. F., Ennos, A. R., ve Pauleit, S. (2007). Adapting cities for climate change: the role of the green infrastructure. Built environment, 33(1), 115-133.
  • Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., ve Briggs, J. M. (2008). Global change and the ecology of cities. science, 319(5864), 756-760.
  • Gunawardena, K. R., Wells, M. J., ve Kershaw, T. (2017). Utilising green and bluespace to mitigate urban heat island intensity. Science of the Total Environment, 584, 1040-1055.
  • Hamada, S., ve Ohta, T. (2010). Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban forestry ve urban greening, 9(1), 15-24.
  • Hou, H., Su, H., Liu, K., Li, X., Chen, S., Wang, W., ve Lin, J. (2022). Driving forces of UHI changes in China's major cities from the perspective of land surface energy balance. Science of The Total Environment, 829, 154710.
  • Huang, C. H., ve Lin, P. Y. (2013). The influence of evapotranspiration by urban greenery on thermal environment in urban microclimate. International Review for Spatial Planning and Sustainable Development, 1(4), 1-12.
  • Jauregui, E. (1997). Heat island development in Mexico City. Atmospheric Environment, 31(22), 3821-3831.
  • Jin, M. S., Kessomkiat, W., ve Pereira, G. (2011). Satellite-observed urbanization characters in Shanghai, China: Aerosols, urban heat island effect, and land–atmosphere interactions. Remote Sensing, 3(1), 83-99.
  • Jun, C., Ban, Y., ve Li, S. (2014). Open access to Earth land-cover map. Nature, 514(7523), 434-434.
  • Kong, F., Yin, H., James, P., Hutyra, L. R., ve He, H. S. (2014). Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landscape and Urban Planning, 128, 35-47.
  • Krehbiel, C. P., Jackson, T., ve Henebry, G. M. (2015). Web-enabled Landsat data time series for monitoring urban heat island impacts on land surface phenology. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5), 2043-2050.
  • Lemonsu, A., Viguie, V., Daniel, M., ve Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate, 14, 586-605.
  • Li, X., Zhou, W., ve Ouyang, Z. (2013). Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution?. Landscape and Urban Planning, 114, 1-8.
  • Li, J., Song, C., Cao, L., Zhu, F., Meng, X., ve Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote sensing of environment, 115(12), 3249-3263.
  • Lin, B. S., ve Lin, C. T. (2016). Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban Forestry ve Urban Greening, 20, 348-357.
  • Morabito, M., Crisci, A., Messeri, A., Orlandini, S., Raschi, A., Maracchi, G., ve Munafò, M. (2016). The impact of built-up surfaces on land surface temperatures in Italian urban areas. Science of the Total Environment, 551, 317-326.
  • Muster, S., Langer, M., Abnizova, A., Young, K. L., ve Boike, J. (2015). Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes. Remote sensing of environment, 168, 1-12.
  • Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment (1967), 7(8), 769-779.
  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24.
  • Park, J., Kim, J. H., Lee, D. K., Park, C. Y., ve Jeong, S. G. (2017). The influence of small green space type and structure at the street level on urban heat island mitigation. Urban forestry ve urban greening, 21, 203-212.
  • Peng, J., Xie, P., Liu, Y., ve Ma, J. (2016). Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sensing of Environment, 173, 145-155.
  • Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F. M., ... ve Myneni, R. B. (2012). Surface urban heat island across 419 global big cities. Environmental science ve technology, 46(2), 696-703.
  • Priyankara, P., Ranagalage, M., Dissanayake, D. M. S. L. B., Morimoto, T., ve Murayama, Y. (2019). Spatial process of surface urban heat island in rapidly growing Seoul metropolitan area for sustainable urban planning using Landsat data (1996–2017). Climate, 7(9), 110.
  • Stabler, L. B., Martin, C. A., ve Brazel, A. J. (2005). Microclimates in a desert city were related to land use and vegetation index. Urban forestry ve urban greening, 3(3-4), 137-147.
  • Steeneveld, G. J., Koopmans, S., Heusinkveld, B. G., ve Theeuwes, N. E. (2014). Refreshing the role of open water surfaces on mitigating the maximum urban heat island effect. Landscape and Urban Planning, 121, 92-96.
  • Streiling, S., ve Matzarakis, A. (2003). Influence of single and small clusters of trees on the bioclimate of a city: a case study. Journal of Arboriculture, 29(6), 309-316.
  • Tan, M., ve Li, X. (2015). Quantifying the effects of settlement size on urban heat islands in fairly uniform geographic areas. Habitat International, 49, 100-106.
  • Tran, H., Uchihama, D., Ochi, S., ve Yasuoka, Y. (2006). Assessment with satellite data of the urban heat island effects in Asian mega cities. International journal of applied Earth observation and Geoinformation, 8(1), 34-48.
  • United Nations, U. N. (2014). World urbanization prospects, the 2011 revision. Population Division, department of economic and social affairs, United Nations Secretariat.
  • Voogt, J. A., ve Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote sensing of environment, 86(3), 370-384.
  • Wong, N. H., ve Yu, C. (2005). Study of green areas and urban heat island in a tropical city. Habitat international, 29(3), 547-558.
  • Xiang, Y., Ye, Y., Peng, C., Teng, M., ve Zhou, Z. (2022). Seasonal variations for combined effects of landscape metrics on land surface temperature (LST) and aerosol optical depth (AOD). Ecological Indicators, 138, 108810.
  • Xu, J., Wei, Q., Huang, X., Zhu, X., ve Li, G. (2010). Evaluation of human thermal comfort near urban waterbody during summer. Building and environment, 45(4), 1072-1080.
  • Yao, R., Wang, L., Huang, X., Niu, Z., Liu, F., ve Wang, Q. (2017). Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. Science of the Total Environment, 609, 742-754.
  • Yildiz ND, Avdan U, Yilmaz S (2013) Analyze of climate features with thermal band in Çoruh River’s Valley Base. In: 6th atmospheric science symposium – ATMOS, 24–26 April. Oral Presentation, ITU, İstanbul
  • Yüksel, Ü., ve Yılmaz, O. (2008). A study on determining and evaluating summertime urban heat islands in Ankara at regional and local scale utilizing remote sensing and meteorological data. Journal of the Faculty of Engineering and Architecture of Gazi University, 23(4).
  • Zhang, H., Qi, Z. F., Ye, X. Y., Cai, Y. B., Ma, W. C., ve Chen, M. N. (2013). Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Applied Geography, 44, 121-133.
  • Zhang, K., Wang, R., Shen, C., ve Da, L. (2010). Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China. Environmental monitoring and assessment, 169(1), 101-112.
  • Zhao, M., Cai, H., Qiao, Z., ve Xu, X. (2016). Influence of urban expansion on the urban heat island effect in Shanghai. International Journal of Geographical Information Science, 30(12), 2421-2441.
  • Zhou, B., Rybski, D., ve Kropp, J. P. (2013). On the statistics of urban heat island intensity. Geophysical research letters, 40(20), 5486-5491. Zhou, D., Zhao, S., Zhang, L., Sun, G., ve Liu, Y. (2015). The footprint of urban heat island effect in China. Scientific reports, 5(1), 1-11.
  • Zhou, W., Huang, G., ve Cadenasso, M. L. (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and urban planning, 102(1), 54-63.
  • Zhu, W., Lű, A., ve Jia, S. (2013). Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sensing of Environment, 130, 62-73.
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Human Geography, Urban Policy, Landscape Architecture
Journal Section All Articles
Authors

Ömer Ünsal 0000-0002-4500-2021

Ali Can Kuzulugil 0000-0002-6404-5182

Başak Aytatlı 0000-0002-4039-293X

Nalan Demircioğlu Yıldız 0000-0002-4871-1579

Early Pub Date June 14, 2023
Publication Date June 15, 2023
Submission Date November 7, 2022
Published in Issue Year 2023 Volume: 16 Issue: 2

Cite

APA Ünsal, Ö., Kuzulugil, A. C., Aytatlı, B., Demircioğlu Yıldız, N. (2023). Alan Kullanım Türlerinin Yer Yüzey Sıcaklığı Verileri ile Zamansal Değişiminin Belirlenmesi (Erzurum Kenti Örneği). Kent Akademisi, 16(2), 1334-1361. https://doi.org/10.35674/kent.1200305

International Refereed and Indexed Journal of Urban Culture and Management | Kent Kültürü ve Yönetimi Uluslararası Hakemli İndeksli Dergi
Information, Communication, Culture, Art and Media Services (ICAM Network) | www.icamnetwork.net
Address: Ahmet Emin Fidan Culture and Research Center, Evkaf Neigh. No: 34 Fatsa Ordu
Tel: +90452 310 20 30 Faks: +90452 310 20 30 | E-Mail: (int): info@icamnetwork.net | (TR) bilgi@icamnetwork.net