Research Article
BibTex RIS Cite

Optimizing Holt-Winters Exponential Smoothing Parameters for Construction Cost Index Forecasting with PSO and Walk-Forward Cross-Validation

Year 2023, Volume: 16 Issue: 4, 2422 - 2439, 16.12.2023
https://doi.org/10.35674/kent.1343590

Abstract

This research aims to enhance the accuracy of Construction Cost Index (CCI) forecasting using Holt-Winters exponential smoothing (ES) by optimizing its parameters, focusing on minimizing the Mean Absolute Percentage Error (MAPE) for precise CCI forecasts. To reach this aim, The Holt-Winters model parameters are optimized through Particle Swarm Optimization (PSO) and Walk-Forward Cross-Validation (WFCV). PSO, a metaheuristic optimization algorithm, is being applied to search for optimal values of the smoothing parameters (alpha, beta, and gamma) that determine the weightage of past observations, trends, and seasonality, respectively. WFCV is assessed the model's performance and ensures robustness. Reduced MAPEs of 22 for CCI forecasts and 2 for training data are the findings of the optimized Holt-Winters model. The obtained alpha, beta, and gamma values are 0.99, 0.77, and 0, respectively, highlighting the importance of while neglecting seasonality. Convergence graphs demonstrate the superiority of the optimization approach over conventional parameter values or random selections. By employing PSO and WFCV, the study efficiently fine-tunes the Holt-Winters model for precise CCI forecasting. Optimized parameter values enable data driven decision-making in construction project cost estimation and budget management. This research contributes a reliable and robust optimization methodology for CCI forecasting, supporting advancements in the field.

References

  • Ashuri, B., & Lu, J. (2010). Time Series Analysis of ENR Construction Cost Index. Journal of Construction Engineering and Management-asce, 136, 1227-1237.
  • Ashuri, B., & Shahandashti, S.M. (2012). Quantifying the Relationship between Construction Cost Index (CCI) and Macroeconomic Factors in the United States.
  • Aydınlı, S. (2022). Time series analysis of building construction cost index in Türkiye. Journal of Construction Engineering, Management & Innovation (Online), 5(4).
  • Berrar, D. (2019). Cross-Validation. Encyclopedia of Bioinformatics and Computational Biology, 1(April), 542-545.
  • Choi, C., Ryu, K.R., & Shahandashti, M. (2021). Predicting City-Level Construction Cost Index Using Linear Forecasting Models. Journal of Construction Engineering and Management-asce, 147, 04020158.
  • Fachrurrazi (2016). Study of Unit Price for Competitive Bidding Based on CCI (Construction Cost Index) for Building. International journal of engineering research and technology, 5.
  • Jiang, F., Awaitey, J., & Xie, H. (2022). Analysis of construction cost and investment planning using time series data. Sustainability, 14(3), 1703.
  • Joukar, A., & Nahmens, I. (2016). Volatility Forecast of Construction Cost Index Using General Autoregressive Conditional Heteroskedastic Method. Journal of Construction Engineering and Management-asce, 142, 04015051.
  • Liu, H., Kwigizile, V., & Huang, W. (2021). Holistic Framework for Highway Construction Cost Index Development Based on Inconsistent Pay Items. Journal of Construction Engineering and Management.
  • Marini, F., & Walczak, B. (2015). Particle swarm optimization. A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153-165.
  • Shahandashti, S. M., & Ashuri, B. (2013). Forecasting engineering news-record construction cost index using multivariate time series models. Journal of Construction Engineering and Management, 139(9), 1237-1243.
  • Tey, K.H., Lim, S.Y., Yusof, A.M., & Chai, C.S. (2015). The implementation of construction cost index (CCI) in Malaysia.
  • Velumani, P., & Nampoothiri, N.V. (2021). Volatility forecast of CIDC Construction Cost Index using smoothing techniques and machine learning. International Review of Applied Sciences and Engineering.
  • Wang, J., & Ashuri, B. (2017). Predicting ENR Construction Cost Index Using Machine-Learning Algorithms. International Journal of Construction Education and Research, 13, 47 - 63.
  • Zhan, T., He, Y., & Xiao, F. (2021). Construction Cost Index Forecasting: A Multi-feature Fusion Approach. arXiv preprint arXiv:2108.10155.

İnşaat Maliyet Endeksi Tahmininde Holt-Winters Üstel Düzeltme Parametrelerinin PSO ve İleri Walk-Forward Cross-Validation ile Optimizasyonu

Year 2023, Volume: 16 Issue: 4, 2422 - 2439, 16.12.2023
https://doi.org/10.35674/kent.1343590

Abstract

Bu çalışmada, İnşaat Maliyet Endeksi (CCI) tahmininde Holt-Winters Üstel Düzeltme Parametrelerinin PSO ve Walk-Forward Cross-Validation (WFCV) ile optimizasyonu yoluyla, Ortalama Mutlak Yüzde Hatasını (MAPE) en aza indirmeye odaklanılarak, tahminin doğruluğunu artırmak amaçlanmaktadır. Bu amaca ulaşmak için, Holt-Winters model parametreleri Parçacık Sürü Optimizasyonu (PSO) ve WFCV ile optimize edilmiştir. Bir metasezgisel optimizasyon algoritması olan PSO, sırasıyla geçmiş gözlemlerin, eğilimlerin ve mevsimselliğin ağırlığını belirleyen yumuşatma parametrelerinin (alfa, beta ve gama) optimal değerlerini aramak için uygulanmaktadır. WFCV, modelin performansını değerlendirir ve sağlamlığı sağlar. CCI tahminleri için 22'ye ve eğitim verileri için 2'ye düşürülen MAPE'ler, çalışmada optimize edilmiş Holt-Winters modelinin bulgularıdır. Elde edilen alfa, beta ve gama değerleri sırasıyla 0.99, 0.77 ve 0'dır ve mevsimselliğin ihmal edilmesinin önemini vurgulamaktadır. Yakınsama grafikleri, optimizasyon yaklaşımının geleneksel parametre değerleri veya rastgele seçimlere göre üstünlüğünü gösterir. Sonuçlar, Holt-Winters modeli, Parçacık Sürü Optimizasyonu ve WFCV kullanılarak hassas CCI tahmini için verimli bir şekilde hesaplanmıştır. Optimize edilmiş parametre değerleri, inşaat projesi maliyet tahmini ve bütçe yönetiminde bilinçli karar vermeye yardımcı olabilir niteliktedir. Bu çalışmanın, CCI tahmini için güvenilir ve sağlam bir optimizasyon metodolojisine katkıda bulunarak alandaki ilerlemeleri desteklediği düşünülmektedir.

References

  • Ashuri, B., & Lu, J. (2010). Time Series Analysis of ENR Construction Cost Index. Journal of Construction Engineering and Management-asce, 136, 1227-1237.
  • Ashuri, B., & Shahandashti, S.M. (2012). Quantifying the Relationship between Construction Cost Index (CCI) and Macroeconomic Factors in the United States.
  • Aydınlı, S. (2022). Time series analysis of building construction cost index in Türkiye. Journal of Construction Engineering, Management & Innovation (Online), 5(4).
  • Berrar, D. (2019). Cross-Validation. Encyclopedia of Bioinformatics and Computational Biology, 1(April), 542-545.
  • Choi, C., Ryu, K.R., & Shahandashti, M. (2021). Predicting City-Level Construction Cost Index Using Linear Forecasting Models. Journal of Construction Engineering and Management-asce, 147, 04020158.
  • Fachrurrazi (2016). Study of Unit Price for Competitive Bidding Based on CCI (Construction Cost Index) for Building. International journal of engineering research and technology, 5.
  • Jiang, F., Awaitey, J., & Xie, H. (2022). Analysis of construction cost and investment planning using time series data. Sustainability, 14(3), 1703.
  • Joukar, A., & Nahmens, I. (2016). Volatility Forecast of Construction Cost Index Using General Autoregressive Conditional Heteroskedastic Method. Journal of Construction Engineering and Management-asce, 142, 04015051.
  • Liu, H., Kwigizile, V., & Huang, W. (2021). Holistic Framework for Highway Construction Cost Index Development Based on Inconsistent Pay Items. Journal of Construction Engineering and Management.
  • Marini, F., & Walczak, B. (2015). Particle swarm optimization. A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153-165.
  • Shahandashti, S. M., & Ashuri, B. (2013). Forecasting engineering news-record construction cost index using multivariate time series models. Journal of Construction Engineering and Management, 139(9), 1237-1243.
  • Tey, K.H., Lim, S.Y., Yusof, A.M., & Chai, C.S. (2015). The implementation of construction cost index (CCI) in Malaysia.
  • Velumani, P., & Nampoothiri, N.V. (2021). Volatility forecast of CIDC Construction Cost Index using smoothing techniques and machine learning. International Review of Applied Sciences and Engineering.
  • Wang, J., & Ashuri, B. (2017). Predicting ENR Construction Cost Index Using Machine-Learning Algorithms. International Journal of Construction Education and Research, 13, 47 - 63.
  • Zhan, T., He, Y., & Xiao, F. (2021). Construction Cost Index Forecasting: A Multi-feature Fusion Approach. arXiv preprint arXiv:2108.10155.
There are 15 citations in total.

Details

Primary Language English
Subjects Architecture Management, Architecture (Other)
Journal Section All Articles
Authors

Özlem Tüz Ebesek 0000-0002-2093-8448

Şafak Ebesek 0000-0002-0616-946X

Publication Date December 16, 2023
Submission Date August 15, 2023
Published in Issue Year 2023 Volume: 16 Issue: 4

Cite

APA Tüz Ebesek, Ö., & Ebesek, Ş. (2023). Optimizing Holt-Winters Exponential Smoothing Parameters for Construction Cost Index Forecasting with PSO and Walk-Forward Cross-Validation. Kent Akademisi, 16(4), 2422-2439. https://doi.org/10.35674/kent.1343590

International Refereed and Indexed Journal of Urban Culture and Management | Kent Kültürü ve Yönetimi Uluslararası Hakemli İndeksli Dergi
Information, Communication, Culture, Art and Media Services (ICAM Network) | www.icamnetwork.net
Address: Ahmet Emin Fidan Culture and Research Center, Evkaf Neigh. No: 34 Fatsa Ordu
Tel: +90452 310 20 30 Faks: +90452 310 20 30 | E-Mail: (int): info@icamnetwork.net | (TR) bilgi@icamnetwork.net