Research Article
BibTex RIS Cite

A Biomimetic Sketch-Based Form Finding Tool

Year 2024, Volume: 17 Issue: 4, 1285 - 1297, 16.07.2024
https://doi.org/10.35674/kent.1462381

Abstract

Sketches play a fundamental role in the design disciplines, serving as crucial representations for ideation, problem-solving, and communication. In the realm of architecture, sketches encapsulate the evolution of ideas from conceptualization to construction. Hand-drawn sketches, characterized by their open-ended, ambiguous nature and rapid production, stand out as indispensable tools in bridging the gap between abstract concepts and tangible designs, guiding the progression from early design stages to final product realization. However, despite their significant potential and pivotal role in the design process, hand sketches have often been overlooked and swiftly abandoned in the ongoing discourse surrounding traditional versus digital design methodologies, particularly with the widespread integration of computer technologies. This study endeavors to unlock the wealth of information embedded within hand sketches, spanning from initial design concepts to intricate manufacturing details, through the utilization of a hybrid digital form-finding tool. By employing swarm algorithms in the quest for form, it is anticipated that the boundaries of conceptual ideas delineated by hand sketches will be expanded. This is facilitated by an algorithm developed in Processing using the Java coding language, complemented by an intuitive interface. The research journey commences with a comprehensive literature review encompassing biomimetics, sketching techniques, and tools for transitioning hand sketches into digital realms. Subsequently, a thorough elucidation of the algorithm, crafted within the Processing environment, is provided.The efficacy of the tool is assessed through experimentation involving adjustments of various parameters on identical sketches, as well as application to seven architectural sketches representing built designs, with subsequent interpretation of the outcomes. It is posited that the adaptability of the algorithm's core logic, coupled with the development-friendly environment of Processing, holds immense potential for empowering designers to steer sketches in desired directions through tailored enhancements.

References

  • Byrne, J. (2012). Approaches to Evolutionary Architectural Design Exploration Using Grammatical Evolution. Dissertation. Dublin: University College Dublin.
  • Colorni, A.,Dorigo, M.,Maniezzo,V. (1991).Distributed optimization by ant colonies. In: Proceedings of the first European Conference on Artificial Life. https://www.researchgate.net/publication/216300484_Distributed_Optimization_by_Ant_Colonies
  • Dunn, N. (2012). Digital fabrication in architecture. Laurence King Publishing Ltd.
  • Eggli, L., Hsu,C., Bruderlin, B.,Elbert,G.(1997).Inferring 3D models from freehand sketches and constraints. Computer-Aided Design, Vol.29, No.2, 101-112.
  • Fernando, R. (2014). Representations for Evolutionary Design Modelling. Dissertation. Queensland: Queensland University of Technology, School of Design.
  • Frazer, J. (1995). An Evolutionary Architecture. London: Architectural Association.
  • Girdhar, A. (2015). Swarm Intelligence and Flocking Behavior. Conference: International Conference on Advancements in Engineering and Technology (ICAET 2015) pp. 9-12. https://www.researchgate.net/publication/331249652_Swarm_Intelligence_and_Flocking_Behavior
  • Goel, A., McAdams, D.A., Stone, R.B. (2014). Biologically Inspired Design—Computational Methods and Tools. London, UK: Springer.
  • Goldschmidt, G. (1991). The dialectics of sketching. Creativity Research Journal, 4(2):123-143
  • Graves, M. (1977). The necessity for drawing: Tangible speculation. Architectural Design, 6(77): 384–394.
  • Gruber, P. (2011) Biomimetics in Architecture—Architecture of Life and Buildings. Wien, Austria: Springer.
  • Güney, D. (2015). The importance of computer-aided courses in architectural education, Procedia - Social and Behavioral Sciences, 176, 757–765.
  • Hensel, M., Menges, A., Weinstock, M. (2006). Techniques and technologies in morphogenetic design. In: Architectural Design. Vol. 76(2). London: Wiley-Academy. Available from: http://onlinelibrary.wiley.com/1850-9999
  • Herbert, D.M. (1993). Architectural study drawings. Van Nostrand Reinhold: New York.
  • Holland, J. (1973) Genetic algorithms and the optimal allocation of trials. SIAM Journal on Computing, 2(2):88-105. DOI: 10.1137/0202009.
  • Iwamoto, L. (2009). Digital fabrications: Architectural and material techniques. Princeton Architectural Press.
  • İslamoğlu, Ö. S. & Değer, K. D. (2015). The location of computer aided drawing and hand drawing on design and presentation in the interior design education. Procedia - Social and Behavioral Sciences, 182, 607–612.
  • Janssen, P. (2005). A Design Method and Computational Architecture for Generating and Evolving Building Designs. Dissertation. Hong Kong: The Hong Kong Polytechnic University, School of Design.
  • Kahn, L.I. (1931). The value and aim in sketching. T-Square Club, 1(6): 19.
  • Karaboğa, D. (2005). An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06. Technical Report, Erciyes University. https://www.researchgate.net/publication/255638348_An_Idea_Based_on_Honey_Bee_Swarm_for_Numerical_Optimization_Technical_Report_-_TR06
  • Knippers, J., Nickel, K. G., Speck, T. (2016). Biomimetic Research for Architecture and Building Construction. Switzerland: Springer International Publishing.
  • Kolarevic, B. (2003). Architecture in the digital age design and manufacturing. Spon Press.
  • Koza, J.R. (1990). Genetic Programming. A Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems. Stanford, CA: Stanford University. Department of Computer Science.
  • Laland, K.N., Uller, T., Feldman, M.W., Sterelny, K., Muller, G.B., Moczek, A. (2015). The extended evolutionary synthesis: Its structure, assumptions and predictions. Proceedings of Biological sciences;282(1813):20151019. DOI: 10.1098/rspb.2015.1019
  • Li, C., Lee, H., Zhang, D.,Jiang,H.(2016). Sketch-based 3D modelling by aligning outlines of an image. Journal of Computational Design and Engineering, 3.286-294.
  • Li,C.,Pan,H.,Liu, Y.,Tong ,X., Sheffer, A.,and Wang, W. (2018). Robust flow- guided neural prediction for sketch-based freeform surface modeling. SIGGRAPH Asia 2018, 37(6), 238.
  • Menges, A. (2007). Computational morphogenesis: Integral form generation and materialization processes. In: Okeil A, Al-Attili A, Mallasi Z, editors. Proceedings of Em'body'ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design ASCAAD, Alexandria, Egypt. Nov 28-30, 2007. pp. 725-744.
  • Millonas, M. M. (1994). Swarms, phase transitions, and collective intelligence. In C. G. Langton, Ed., Artificial Life III. Addison Wesley.
  • Muehlbauer, M., Song, A., Burry, J. (2017). Automated shape design by grammatical evolution. Vol. 10198. In: Correia J, Ciesielski V, Liapis A, editors. Computational Intelligence in Music, Sound, Art and Design. 6th International Conference on EvoMUSART, Amsterdam, The Netherlands.
  • Noble, D. (2015) Evolution beyond neo-Darwinism: A new conceptual framework. The Journal of Experimental Biology;218(Pt 1):7-13. DOI: 10.1242/jeb.106310.
  • O'Neill, M., McDermott, J., Swafford, J.M., Byrne, J., Hemberg, E., Brabazon, A. (2010). Evolutionary design using grammatical evolution and shape grammars. Designing a shelter. International Journal of Difference Equations, 3(1):4. DOI: 10.1504/IJDE.2010.032820
  • Rechenberg, I. (1971). Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der biologischen Evolution [PhD thesis]. TU Berlin, Germany.
  • Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4) (SIGGRAPH '87 Conference Proceedings). 25-34.
  • Roudavski, A. (2009). Towards morphogenesis in architecture. International Journal of Architectural Computing; 7(3):345-374. DOI: 10.1260/147807709789621266
  • Shiffman, D. (2012). The nature of code. USA. https://natureofcode.com/book/chapter-6-autonomous-agents/
  • Stiny, G., Gips, J.(1972). Shape grammars and the generative specification of painting and sculpture. In: Information Processing, Vol. 71, pp. 1460-1465, Amsterdam: North-Holland Publishing Company.
  • Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D., Fricker, M., Yumiki, K., Kobayashi, R., Nakagaki, T. (2010). Rules for Biologically Inspired Adaptive Network Design. Science (New York, N.Y.). 327. 439-42. 10.1126/science.1177894.
  • Terzidis, K. (2006). Algorithmic architecture. Architectural Press.
  • URL 1- https://en.wikipedia.org/wiki/Ordrupgaard#/media/File:Ordrupgaard_Museum_extension.jpg 11.06.2024, CC BY 2.0, free to use and adapt for academic purposes.
  • URL 2- https://en.wikipedia.org/wiki/Gehry_Residence#/media/File:Gehry_House_-_Image01.jpg, 11.06.2024, CC BY 2.0, free to use and adapt for academic purposes.
  • URL 3- https://en.wikipedia.org/wiki/Notre-Dame_du_Haut#/media/File:RonchampCorbu.jpg, , CC BY 3.0, free to use and adapt for academic purposes.
  • URL 4- https://pixabay.com/photos/maxxi-museum-construction-3616142/, 11.06.2024, Free for use under the Pixabay Content License.
  • URL 5- https://en.wikipedia.org/wiki/Walt_Disney_Concert_Hall#/media/File:Walt_Disney_Concert_Hall,_LA,_CA,_jjron_22.03.2012.jpg, 11.06.2024, GNU Free Documentation License 1.2.
  • VDI (Verein Deutscher Ingenieure), (2011). Guideline 6220. Biomimetics – Conception and strategy differences between bionic and conventional methods/products. Association of German Engineers. Berlin: Beuth Verlag.

Biomimetik Eskiz Tabanlı Bir Form Bulma Aracı

Year 2024, Volume: 17 Issue: 4, 1285 - 1297, 16.07.2024
https://doi.org/10.35674/kent.1462381

Abstract

Tasarım disiplinlerinde, eskizler temel temsillerdir ve düşünme, problem çözme ve iletişim için temel temsillerdendir. Hızlı bir şekilde üretilen el çizimleri, fikirlerin somut ürünlere dönüşmesinde erken tasarım aşamasından son ürüne kadar önemli araçlardır. Ancak, bilgisayar teknolojilerinin tasarım pratiğinde giderek daha yaygın hale gelmesiyle, el eskizleri, geleneksel ve dijital tasarım arasındaki tartışmalarda önemli bir konumda olmalarına rağmen, sıklıkla göz ardı edilen bir tasarım yöntemi haline gelmiştir. Bu çalışmada, el eskizlerinin içerdiği bilgilerin, bir hibrit sayısal form bulma aracı ile ortaya çıkarılması hedeflenmiştir. Java kodlama dili ile Processing platformunda geliştirilen algoritma ve kullanımı kolay arayüz sayesinde, sürü algoritmalarını temel alan bir form arayışının, el eskizlerinin kavram aşamasındaki fikirlerin sınırlarını genişleteceği düşünülmektedir. Biyomimetik tasarım, eskizler ve sayısal ortamlarda el eskizlerinin sayısala dönüştürülmesi ile ilgili literatür araştırması ile başlayan çalışma, Processing ile geliştirilen algoritmanın detaylı açıklamasını ile devam etmektedir. Algoritma, farklı parametrelerin etkilerinin test edildiği ve yedi mimari eserin eskizlerinin kullanıldığı iki uygulama ile test edilmiş ve sonuçlar yorumlanmıştır. Processing'in gelişime açık yapısı sayesinde, biyomimetik parametrelere temellenen bu aracın istenen yönde geliştirilebileceği ve tasarımcının farklı form arayışlarına olanak tanıyabileceği düşünülmektedir.

References

  • Byrne, J. (2012). Approaches to Evolutionary Architectural Design Exploration Using Grammatical Evolution. Dissertation. Dublin: University College Dublin.
  • Colorni, A.,Dorigo, M.,Maniezzo,V. (1991).Distributed optimization by ant colonies. In: Proceedings of the first European Conference on Artificial Life. https://www.researchgate.net/publication/216300484_Distributed_Optimization_by_Ant_Colonies
  • Dunn, N. (2012). Digital fabrication in architecture. Laurence King Publishing Ltd.
  • Eggli, L., Hsu,C., Bruderlin, B.,Elbert,G.(1997).Inferring 3D models from freehand sketches and constraints. Computer-Aided Design, Vol.29, No.2, 101-112.
  • Fernando, R. (2014). Representations for Evolutionary Design Modelling. Dissertation. Queensland: Queensland University of Technology, School of Design.
  • Frazer, J. (1995). An Evolutionary Architecture. London: Architectural Association.
  • Girdhar, A. (2015). Swarm Intelligence and Flocking Behavior. Conference: International Conference on Advancements in Engineering and Technology (ICAET 2015) pp. 9-12. https://www.researchgate.net/publication/331249652_Swarm_Intelligence_and_Flocking_Behavior
  • Goel, A., McAdams, D.A., Stone, R.B. (2014). Biologically Inspired Design—Computational Methods and Tools. London, UK: Springer.
  • Goldschmidt, G. (1991). The dialectics of sketching. Creativity Research Journal, 4(2):123-143
  • Graves, M. (1977). The necessity for drawing: Tangible speculation. Architectural Design, 6(77): 384–394.
  • Gruber, P. (2011) Biomimetics in Architecture—Architecture of Life and Buildings. Wien, Austria: Springer.
  • Güney, D. (2015). The importance of computer-aided courses in architectural education, Procedia - Social and Behavioral Sciences, 176, 757–765.
  • Hensel, M., Menges, A., Weinstock, M. (2006). Techniques and technologies in morphogenetic design. In: Architectural Design. Vol. 76(2). London: Wiley-Academy. Available from: http://onlinelibrary.wiley.com/1850-9999
  • Herbert, D.M. (1993). Architectural study drawings. Van Nostrand Reinhold: New York.
  • Holland, J. (1973) Genetic algorithms and the optimal allocation of trials. SIAM Journal on Computing, 2(2):88-105. DOI: 10.1137/0202009.
  • Iwamoto, L. (2009). Digital fabrications: Architectural and material techniques. Princeton Architectural Press.
  • İslamoğlu, Ö. S. & Değer, K. D. (2015). The location of computer aided drawing and hand drawing on design and presentation in the interior design education. Procedia - Social and Behavioral Sciences, 182, 607–612.
  • Janssen, P. (2005). A Design Method and Computational Architecture for Generating and Evolving Building Designs. Dissertation. Hong Kong: The Hong Kong Polytechnic University, School of Design.
  • Kahn, L.I. (1931). The value and aim in sketching. T-Square Club, 1(6): 19.
  • Karaboğa, D. (2005). An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06. Technical Report, Erciyes University. https://www.researchgate.net/publication/255638348_An_Idea_Based_on_Honey_Bee_Swarm_for_Numerical_Optimization_Technical_Report_-_TR06
  • Knippers, J., Nickel, K. G., Speck, T. (2016). Biomimetic Research for Architecture and Building Construction. Switzerland: Springer International Publishing.
  • Kolarevic, B. (2003). Architecture in the digital age design and manufacturing. Spon Press.
  • Koza, J.R. (1990). Genetic Programming. A Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems. Stanford, CA: Stanford University. Department of Computer Science.
  • Laland, K.N., Uller, T., Feldman, M.W., Sterelny, K., Muller, G.B., Moczek, A. (2015). The extended evolutionary synthesis: Its structure, assumptions and predictions. Proceedings of Biological sciences;282(1813):20151019. DOI: 10.1098/rspb.2015.1019
  • Li, C., Lee, H., Zhang, D.,Jiang,H.(2016). Sketch-based 3D modelling by aligning outlines of an image. Journal of Computational Design and Engineering, 3.286-294.
  • Li,C.,Pan,H.,Liu, Y.,Tong ,X., Sheffer, A.,and Wang, W. (2018). Robust flow- guided neural prediction for sketch-based freeform surface modeling. SIGGRAPH Asia 2018, 37(6), 238.
  • Menges, A. (2007). Computational morphogenesis: Integral form generation and materialization processes. In: Okeil A, Al-Attili A, Mallasi Z, editors. Proceedings of Em'body'ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design ASCAAD, Alexandria, Egypt. Nov 28-30, 2007. pp. 725-744.
  • Millonas, M. M. (1994). Swarms, phase transitions, and collective intelligence. In C. G. Langton, Ed., Artificial Life III. Addison Wesley.
  • Muehlbauer, M., Song, A., Burry, J. (2017). Automated shape design by grammatical evolution. Vol. 10198. In: Correia J, Ciesielski V, Liapis A, editors. Computational Intelligence in Music, Sound, Art and Design. 6th International Conference on EvoMUSART, Amsterdam, The Netherlands.
  • Noble, D. (2015) Evolution beyond neo-Darwinism: A new conceptual framework. The Journal of Experimental Biology;218(Pt 1):7-13. DOI: 10.1242/jeb.106310.
  • O'Neill, M., McDermott, J., Swafford, J.M., Byrne, J., Hemberg, E., Brabazon, A. (2010). Evolutionary design using grammatical evolution and shape grammars. Designing a shelter. International Journal of Difference Equations, 3(1):4. DOI: 10.1504/IJDE.2010.032820
  • Rechenberg, I. (1971). Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der biologischen Evolution [PhD thesis]. TU Berlin, Germany.
  • Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4) (SIGGRAPH '87 Conference Proceedings). 25-34.
  • Roudavski, A. (2009). Towards morphogenesis in architecture. International Journal of Architectural Computing; 7(3):345-374. DOI: 10.1260/147807709789621266
  • Shiffman, D. (2012). The nature of code. USA. https://natureofcode.com/book/chapter-6-autonomous-agents/
  • Stiny, G., Gips, J.(1972). Shape grammars and the generative specification of painting and sculpture. In: Information Processing, Vol. 71, pp. 1460-1465, Amsterdam: North-Holland Publishing Company.
  • Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D., Fricker, M., Yumiki, K., Kobayashi, R., Nakagaki, T. (2010). Rules for Biologically Inspired Adaptive Network Design. Science (New York, N.Y.). 327. 439-42. 10.1126/science.1177894.
  • Terzidis, K. (2006). Algorithmic architecture. Architectural Press.
  • URL 1- https://en.wikipedia.org/wiki/Ordrupgaard#/media/File:Ordrupgaard_Museum_extension.jpg 11.06.2024, CC BY 2.0, free to use and adapt for academic purposes.
  • URL 2- https://en.wikipedia.org/wiki/Gehry_Residence#/media/File:Gehry_House_-_Image01.jpg, 11.06.2024, CC BY 2.0, free to use and adapt for academic purposes.
  • URL 3- https://en.wikipedia.org/wiki/Notre-Dame_du_Haut#/media/File:RonchampCorbu.jpg, , CC BY 3.0, free to use and adapt for academic purposes.
  • URL 4- https://pixabay.com/photos/maxxi-museum-construction-3616142/, 11.06.2024, Free for use under the Pixabay Content License.
  • URL 5- https://en.wikipedia.org/wiki/Walt_Disney_Concert_Hall#/media/File:Walt_Disney_Concert_Hall,_LA,_CA,_jjron_22.03.2012.jpg, 11.06.2024, GNU Free Documentation License 1.2.
  • VDI (Verein Deutscher Ingenieure), (2011). Guideline 6220. Biomimetics – Conception and strategy differences between bionic and conventional methods/products. Association of German Engineers. Berlin: Beuth Verlag.
There are 44 citations in total.

Details

Primary Language English
Subjects Information Technologies in Architecture and Design
Journal Section All Articles
Authors

Asena Kumsal Şen Bayram 0000-0002-1131-6073

Berfin Aybike Körükcü 0000-0003-4492-7257

Publication Date July 16, 2024
Submission Date March 31, 2024
Acceptance Date June 17, 2024
Published in Issue Year 2024 Volume: 17 Issue: 4

Cite

APA Şen Bayram, A. K., & Körükcü, B. A. (2024). A Biomimetic Sketch-Based Form Finding Tool. Kent Akademisi, 17(4), 1285-1297. https://doi.org/10.35674/kent.1462381

International Refereed and Indexed Journal of Urban Culture and Management | Kent Kültürü ve Yönetimi Uluslararası Hakemli İndeksli Dergi
Information, Communication, Culture, Art and Media Services (ICAM Network) | www.icamnetwork.net
Address: Ahmet Emin Fidan Culture and Research Center, Evkaf Neigh. No: 34 Fatsa Ordu
Tel: +90452 310 20 30 Faks: +90452 310 20 30 | E-Mail: (int): info@icamnetwork.net | (TR) bilgi@icamnetwork.net