Research Article
BibTex RIS Cite

Ahşap Teknolojilerinin Süreç ve Performans Kriterleri Bağlamında Değerlendirilmesi: Sürdürülebilir Tasarım ve Üretim Yaklaşımları

Year 2025, Volume: 18 Issue: 5, 2813 - 2830, 19.09.2025
https://doi.org/10.35674/kent.1615320

Abstract

Dijital tasarım ve üretim teknolojilerinin gelişimiyle birlikte ahşap tasarım ve üretim süreçleri daha kolay kontrol edilebilirken, montaj ve üretim daha hızlı gerçekleştirilebilmektedir. Ahşap teknolojileri ile ilgili çalışmalar her teknolojinin farklı performanslara sahip olduğunu göstermektedir. Bu teknolojilerin analizlerinin doğru bir şekilde yapılabilmesi için ahşap teknolojilerinin kendi içlerinde sınıflandırılması ve performans kriterlerine göre değerlendirilmesi gerekmektedir. Çalışmada, ahşap teknolojilerinin malzeme, tasarım ve üretim açısından sınıflandırılması, bu teknolojilerin ve süreçlerinin performans kriterlerine göre değerlendirilmesi amaçlanmıştır. Teknoloji ile üretilen ahşap malzemeler; kütle kereste (Mass timber) olarak CLT (Çapraz Lamine Ahşap), Glulam (Lamine Yapıştırma Ahşap), NLT (Çivili Lamine Ahşap) gibi malzemeler, ahşap kompozitler ve termal modifiye ahşap olarak gruplandırılmıştır. Tasarım açısından, parametrik tasarım, BIM (Yapı Bilgi Modellemesi), CAD (Bilgisayar Destekli Tasarım), dijital simülasyon, dijital modelleme ve yapay zekâ entegre tasarım uygulamaları ve 3B baskı teknolojileri ele alınmıştır. Üretim açısından, dijital üretim (Prefabrikasyon, modüler sistem, CNC, prototipleme, masif panel sistem, ahşap laminasyon ve presleme sistemleri) ve robotik-otomasyon sistemleri (montaj, işletme robotik demontaj, otonom yapı inşası, yapay zekâ ile makine imalat teknolojisi) olarak incelenmiştir. Bu teknolojiler, işlem hassasiyeti, montaj hızlandırma, sistematik geri bildirim, rasyonalizasyon, yapısal izleme, standardizasyon süreçlerine ve hata azaltma, üretim hızında artış, kolay denetim, dayanım, estetik, enerji etkinliği ve atık azaltma gibi performans kriterlerine göre değerlendirilmiştir. Bu bağlamda, çalışmada sistematik literatür analizi yöntemi kullanılarak teknolojilerin ihtiyaçlara uygunluğunun belirlenmesiyle tasarım ve üretim süreçlerinin optimize edilebilmesi hedeflenmiştir. Teknolojilerin mimari tasarım ve üretim süreçlerindeki rolü, çok katmanlı bir analiz yöntemi ile ele alınmıştır. Bu çalışma, ahşap teknolojilerinin performans kriterlerine göre sınıflandırılarak değerlendirilmesi sonucunda, farklı teknolojilerin tasarım ve üretim süreçlerindeki etkinliğini ortaya koymaktadır. Bulgular, bu teknolojilerin kullanım potansiyellerini ve avantajlarını belirleyerek, mimarlık sektöründeki tasarım ve uygulama süreçlerine objektif bir analiz ortamı sunduğunu göstermektedir. Belirlenen kriterler ile ahşap teknolojilerinin tasarım ve üretim süreçlerinde optimize edilmesine yönelik bir çerçeve sunularak, yaklaşımın mimarlık sektöründeki profesyonellere doğru teknoloji seçiminde yol gösterici olacağı düşünülmektedir.

Project Number

1

References

  • Aicher, S., Reinhardt, H. W., & Garrecht, H. (Eds.). (2013). Materials and Joints in Timber Structures: Recent Developments of Technology.
  • Arslan, R., Özdemir, T., & Akyüz, İ. (2017). TÜRKİYE MOBİLYA SEKTÖRÜ AÇISINDAN TASARIM SÜRECİNDE BİLGİSAYAR KULLANIMININ ÖNEMİ VE SEKTÖRE YÖNELİK BİLGİSAYAR DESTEKLİ TASARIM (CAD) YAZILIMLARININ İNCELENMESİ. İleri Teknoloji Bilimleri Dergisi, 6(3), 1105-1118.
  • Bagheri, S., Alinejad, M., Ohno, K., Hasburgh, L., Arango, R., & Nejad, M. (2022). Improving durability of cross laminated timber (CLT) with borate treatment. Journal of Wood Science, 68(1), 34.
  • Bekiroğlu, B., Alaçam, S., & Güzelci, O. Z. (2024) Tarihi Ahşap Yapı Bileşenlerinin Belgelenmesi ve CNC ile Yeniden Üretimi.
  • Bierach, C., Coelho, A. A., Turrin, M., Asut, S., & Knaack, U. (2023). Wood-based 3D printing: Potential and limitation to 3D print building elements with cellulose & lignin. Architecture, Structures and Construction, 3(2), 157-170.
  • Bianconi, F., & Filippucci, M. (2019). Digital wood design. Cham: Springer International Publishing.
  • Buri, H. U., & Weinand, Y. (2011). The tectonics of timber architecture in the digital age. Building with Timber Paths into the Future, 56-63.
  • Buswell, R. A., Soar, R. & Thorpe, A., (2007), Freeform Construction, Automation in Construction, C.16, S.2, 224-231.
  • Calquin, D. L., Mata, R., Correa, C., Núñez, E., Bustamante, G., Caicedo, N., ... & Roa, L. (2024). Implementation of BIM Technologies in Wood Construction: A Review of the State of the Art From a Multidisciplinary Approach.
  • Coşkun,B.,Yardımlı,S .(2022). Endüstriyel ahşap malzemenin yapıda kullanımı; Cambridge Merkez Camisi. KAPU Trakya Journal of Architecture and Design, 2(1), 20-34.
  • Çakıroğlu, E. O., Taşdemir, T., & Çakıroğlu, B. (2023). Geleneksel türk mimarisi motiflerinin 3D CNC teknolojisi ile ahşap kapılarda tasarımı ve uygulanması: Bafra Kongre Merkezi Örneği. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 19(2), 143-162.
  • Çalışkan, Ö., Meriç, E., & Yüncüler, M. (2019). Ahşap ve Ahşap Yapıların Dünü, Bugünü ve Yarını. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(1), 109-118.
  • Çırpı, M. E., & Öner, D. (2021). Mimarlıkta Bilgisayar Destekli Fabrikasyon Teknolojileri ve Kullanım Yaklaşımları. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(2), 943-956.
  • Das, A. K., Agar, D. A., Rudolfsson, M., & Larsson, S. H. (2021). A review on wood powders in 3D printing: Processes, properties and potential applications. Journal of materials research and technology, 15, 241-255.
  • Duarte, J. P. (2005). "A Discursive Grammar for Customizing Mass Housing: The Case of Siza’s Houses at Malagueira." Automation in Construction, 14(2), 265-275.
  • Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors. Wiley.
  • Fréchard, V., Bléron, L., Meyer, J., Besançon, F., & Duchanois, G. (2023, June). Stratoconception®, an additive manufacturing process for timber architecture: challenges and opportunities. In World Conference on Timber Engineering (WCTE 2023) (pp. 9-22).
  • Gramazio, F., Kohler, M., & Willmann, J. (2014). The Robotic Touch: How Robots Change Architecture. Park Books.
  • Harte, A. M. (2017). Mass timber – the emergence of a modern construction material. Journal of Building Engineering, 12, 215-230.
  • İpek, Y. (2014). Hesaplamalı tasarım yaklaşımları: Bütünleşik bir tasarım önerisi.
  • Kaçmaz, Ş. (2019). Parametrik Tasarım ve BIM. Yapı Bilgi Modelleme, 1(1), 3-9.
  • Kitek Kuzman, M., & Sandberg, D. (2017). Comparison of timber-house technologies and initiatives supporting use of timber in Slovenia and in Sweden-the state of the art. iForest-Biogeosciences and Forestry, 10(6), 930.
  • Kolarevic, B. (2003). Architecture in the digital age. Design and Manufacturing. Nueva York-Londres: Spon Press-Taylor & Francis Group.
  • Kunic, A., Kramberger, A., & Naboni, R. (2021). Cyber-physical robotic process for re-configurable wood architecture: Closing the circular loop in wood architecture. In 39th International Conference on Education and Research in Computer Aided Architectural Design in Europe, eCAADe 2021 (pp. 181-188). Education and research in Computer Aided Architectural Design in Europe.
  • Llatas, C., Quiñones, R., & Bizcocho, N. (2022). Environmental impact assessment of construction waste recycling versus disposal scenarios using an LCA-BIM tool during the design stage. Recycling, 7(6), 82.
  • Labonnote, N., Rønnquist, A., Manum, B., & Rüther, P. (2016). "Additive Construction: State-of-the-Art, Challenges and Opportunities." Automation in Construction, 72, 347-366.
  • Leskovar, V. Z., & Premrov, M. (2013). Energy-efficient timber-glass houses. Springer Science+ Business Media.
  • Lobos Calquin, D., Mata, R., Correa, C., Nuñez, E., Bustamante, G., Caicedo, N., ... & Roa, L. (2024). Implementation of Building Information Modeling Technologies in Wood Construction: A Review of the State of the Art from a Multidisciplinary Approach. Buildings, 14(3), 584.
  • Mayo, J. (2015). Solid wood: case studies in mass timber architecture, technology and design. Routledge.
  • Natterer, J., KESSEL, M., & DE WOLF, A. (1986). Le bois et l'informatique. Nawari, N. (2012). BIM standardization and wood structures. Computing in Civil Engineering (2012), 293-300.
  • Premrov, M., & Žegarac Leskovar, V. (2023). Innovative structural systems for timber buildings: A comprehensive review of contemporary solutions. Buildings, 13(7), 1820.
  • Poirier, E. A., Forgues, D., & Staub-French, S. (2019). "Assessing the Performance of BIM in Building Design Stages: Application to Fire Safety and Structural Integrity in Timber Structures." Automation in Construction, 104, 76-88.
  • Pottmann, H., Eigensatz, M., Vaxman, A., & Wallner, J. (2015). Architectural geometry. Computers & graphics, 47, 145-164. Strauss H., (2013). AM Envelope- ThePotential of Additive Manufacturing for Facade Construction, Faculty of Architecture, Delft University of Technology.
  • Şişman, M. E. (2018). Amerika Birleşik Devletleri’nde ahşap evin gelişimi ve prefabrik ahşap ev katalogları (Master's thesis, Fatih Sultan Mehmet Vakıf Üniversitesi, Mühendislik ve Fen Bilimleri Enstitüsü).
  • Tannert, T., Schmidt, D., & Lam, F. (2008). CNC timber processing in research and teaching. In Proceedings of the 51st International Convention of Society of Wood Science and Technology (pp. 1-9).
  • Torniainen, P., Jones, D., & Sandberg, D. (2021). Colour as a quality indicator for industrially manufactured ThermoWood®. Wood Material Science & Engineering, 16(4), 287-289.
  • Tjeerdsma, B. F., Boonstra, M., Pizzi, A., Tekely, P., & Militz, H. (1998). Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh-und Werkstoff, 56(3), 149-153.
  • Wieruszewski, M., & Mazela, B. (2017). Cross Laminated Timber (CLT) as an Alternative Form of Construction Wood. Wood Industry/Drvna Industrija, 68(4).
  • Wójcik, M. (2020). Reframing wood construction: Innovation in architecture through activating material properties with the use of digital technologies.
  • Zelinka, S. L., Passarini, L., Matt, F. J., & Kirker, G. T. (2019). Corrosiveness of thermally modified wood. Forests, 11(1), 50.
  • Żmijewki, T., & Wojtowicz-Jankowska, D. (2017). Timber-Material of the future-Examples of small wooden architectural structures. In IOP Conference Series: Materials Science and Engineering (Vol. 245, No. 8, p. 082019). IOP Publishing.

Evaluation of Wood Technologies in the Context of Process and Performance Criteria: Sustainable Design and Production Approaches

Year 2025, Volume: 18 Issue: 5, 2813 - 2830, 19.09.2025
https://doi.org/10.35674/kent.1615320

Abstract

With the development of digital design and production technologies, wood design and production processes can be controlled more easily, while assembly and production can be carried out faster. Studies on wood technologies show that each technology has different performances. In order to analyze these technologies correctly, wood technologies need to be classified within themselves and evaluated according to performance criteria. The aim of the study is to classify wood technologies in terms of material, design and production, and to evaluate these technologies and processes according to performance criteria. Wood materials produced with technology are grouped as mass timber (CLT), Glulam (Laminated Timber), NLT (Nailed Laminated Timber), wood composites and thermally modified wood. In terms of design, parametric design, BIM (Building Information Modeling), CAD (Computer Aided Design), digital simulation, digital modeling and artificial intelligence integrated design applications and 3D printing technologies are discussed. In terms of production, digital production (Prefabrication, modular system, CNC, prototyping, solid panel system, wood lamination and pressing systems) and robotic-automation systems (assembly, operation robotic disassembly, autonomous structure construction, machine manufacturing technology with artificial intelligence) are examined. These technologies were evaluated according to process precision, assembly acceleration, systematic feedback, rationalization, structural monitoring, standardization processes and performance criteria such as waste reduction, energy efficiency, easy control, error reduction, aesthetics, durability and increase in production speed. In this context, the aim of the study was to determine the suitability of technologies to the needs by using the systematic literature analysis method and to optimize design and production processes. The role of technologies in architectural design and production processes was addressed with a multi-layered analysis method. This study, as a result of the evaluation of wood technologies by classifying them according to performance criteria, reveals the effectiveness of different technologies in design and production processes. The findings show that these technologies provide an objective analysis environment for design and application processes in the architecture sector by determining their usage potential and advantages. It is thought that the approach will guide professionals in the architecture sector in choosing the right technology by presenting a framework for optimizing wood technologies in design and production processes with the determined criteria.

Project Number

1

References

  • Aicher, S., Reinhardt, H. W., & Garrecht, H. (Eds.). (2013). Materials and Joints in Timber Structures: Recent Developments of Technology.
  • Arslan, R., Özdemir, T., & Akyüz, İ. (2017). TÜRKİYE MOBİLYA SEKTÖRÜ AÇISINDAN TASARIM SÜRECİNDE BİLGİSAYAR KULLANIMININ ÖNEMİ VE SEKTÖRE YÖNELİK BİLGİSAYAR DESTEKLİ TASARIM (CAD) YAZILIMLARININ İNCELENMESİ. İleri Teknoloji Bilimleri Dergisi, 6(3), 1105-1118.
  • Bagheri, S., Alinejad, M., Ohno, K., Hasburgh, L., Arango, R., & Nejad, M. (2022). Improving durability of cross laminated timber (CLT) with borate treatment. Journal of Wood Science, 68(1), 34.
  • Bekiroğlu, B., Alaçam, S., & Güzelci, O. Z. (2024) Tarihi Ahşap Yapı Bileşenlerinin Belgelenmesi ve CNC ile Yeniden Üretimi.
  • Bierach, C., Coelho, A. A., Turrin, M., Asut, S., & Knaack, U. (2023). Wood-based 3D printing: Potential and limitation to 3D print building elements with cellulose & lignin. Architecture, Structures and Construction, 3(2), 157-170.
  • Bianconi, F., & Filippucci, M. (2019). Digital wood design. Cham: Springer International Publishing.
  • Buri, H. U., & Weinand, Y. (2011). The tectonics of timber architecture in the digital age. Building with Timber Paths into the Future, 56-63.
  • Buswell, R. A., Soar, R. & Thorpe, A., (2007), Freeform Construction, Automation in Construction, C.16, S.2, 224-231.
  • Calquin, D. L., Mata, R., Correa, C., Núñez, E., Bustamante, G., Caicedo, N., ... & Roa, L. (2024). Implementation of BIM Technologies in Wood Construction: A Review of the State of the Art From a Multidisciplinary Approach.
  • Coşkun,B.,Yardımlı,S .(2022). Endüstriyel ahşap malzemenin yapıda kullanımı; Cambridge Merkez Camisi. KAPU Trakya Journal of Architecture and Design, 2(1), 20-34.
  • Çakıroğlu, E. O., Taşdemir, T., & Çakıroğlu, B. (2023). Geleneksel türk mimarisi motiflerinin 3D CNC teknolojisi ile ahşap kapılarda tasarımı ve uygulanması: Bafra Kongre Merkezi Örneği. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 19(2), 143-162.
  • Çalışkan, Ö., Meriç, E., & Yüncüler, M. (2019). Ahşap ve Ahşap Yapıların Dünü, Bugünü ve Yarını. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(1), 109-118.
  • Çırpı, M. E., & Öner, D. (2021). Mimarlıkta Bilgisayar Destekli Fabrikasyon Teknolojileri ve Kullanım Yaklaşımları. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(2), 943-956.
  • Das, A. K., Agar, D. A., Rudolfsson, M., & Larsson, S. H. (2021). A review on wood powders in 3D printing: Processes, properties and potential applications. Journal of materials research and technology, 15, 241-255.
  • Duarte, J. P. (2005). "A Discursive Grammar for Customizing Mass Housing: The Case of Siza’s Houses at Malagueira." Automation in Construction, 14(2), 265-275.
  • Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors. Wiley.
  • Fréchard, V., Bléron, L., Meyer, J., Besançon, F., & Duchanois, G. (2023, June). Stratoconception®, an additive manufacturing process for timber architecture: challenges and opportunities. In World Conference on Timber Engineering (WCTE 2023) (pp. 9-22).
  • Gramazio, F., Kohler, M., & Willmann, J. (2014). The Robotic Touch: How Robots Change Architecture. Park Books.
  • Harte, A. M. (2017). Mass timber – the emergence of a modern construction material. Journal of Building Engineering, 12, 215-230.
  • İpek, Y. (2014). Hesaplamalı tasarım yaklaşımları: Bütünleşik bir tasarım önerisi.
  • Kaçmaz, Ş. (2019). Parametrik Tasarım ve BIM. Yapı Bilgi Modelleme, 1(1), 3-9.
  • Kitek Kuzman, M., & Sandberg, D. (2017). Comparison of timber-house technologies and initiatives supporting use of timber in Slovenia and in Sweden-the state of the art. iForest-Biogeosciences and Forestry, 10(6), 930.
  • Kolarevic, B. (2003). Architecture in the digital age. Design and Manufacturing. Nueva York-Londres: Spon Press-Taylor & Francis Group.
  • Kunic, A., Kramberger, A., & Naboni, R. (2021). Cyber-physical robotic process for re-configurable wood architecture: Closing the circular loop in wood architecture. In 39th International Conference on Education and Research in Computer Aided Architectural Design in Europe, eCAADe 2021 (pp. 181-188). Education and research in Computer Aided Architectural Design in Europe.
  • Llatas, C., Quiñones, R., & Bizcocho, N. (2022). Environmental impact assessment of construction waste recycling versus disposal scenarios using an LCA-BIM tool during the design stage. Recycling, 7(6), 82.
  • Labonnote, N., Rønnquist, A., Manum, B., & Rüther, P. (2016). "Additive Construction: State-of-the-Art, Challenges and Opportunities." Automation in Construction, 72, 347-366.
  • Leskovar, V. Z., & Premrov, M. (2013). Energy-efficient timber-glass houses. Springer Science+ Business Media.
  • Lobos Calquin, D., Mata, R., Correa, C., Nuñez, E., Bustamante, G., Caicedo, N., ... & Roa, L. (2024). Implementation of Building Information Modeling Technologies in Wood Construction: A Review of the State of the Art from a Multidisciplinary Approach. Buildings, 14(3), 584.
  • Mayo, J. (2015). Solid wood: case studies in mass timber architecture, technology and design. Routledge.
  • Natterer, J., KESSEL, M., & DE WOLF, A. (1986). Le bois et l'informatique. Nawari, N. (2012). BIM standardization and wood structures. Computing in Civil Engineering (2012), 293-300.
  • Premrov, M., & Žegarac Leskovar, V. (2023). Innovative structural systems for timber buildings: A comprehensive review of contemporary solutions. Buildings, 13(7), 1820.
  • Poirier, E. A., Forgues, D., & Staub-French, S. (2019). "Assessing the Performance of BIM in Building Design Stages: Application to Fire Safety and Structural Integrity in Timber Structures." Automation in Construction, 104, 76-88.
  • Pottmann, H., Eigensatz, M., Vaxman, A., & Wallner, J. (2015). Architectural geometry. Computers & graphics, 47, 145-164. Strauss H., (2013). AM Envelope- ThePotential of Additive Manufacturing for Facade Construction, Faculty of Architecture, Delft University of Technology.
  • Şişman, M. E. (2018). Amerika Birleşik Devletleri’nde ahşap evin gelişimi ve prefabrik ahşap ev katalogları (Master's thesis, Fatih Sultan Mehmet Vakıf Üniversitesi, Mühendislik ve Fen Bilimleri Enstitüsü).
  • Tannert, T., Schmidt, D., & Lam, F. (2008). CNC timber processing in research and teaching. In Proceedings of the 51st International Convention of Society of Wood Science and Technology (pp. 1-9).
  • Torniainen, P., Jones, D., & Sandberg, D. (2021). Colour as a quality indicator for industrially manufactured ThermoWood®. Wood Material Science & Engineering, 16(4), 287-289.
  • Tjeerdsma, B. F., Boonstra, M., Pizzi, A., Tekely, P., & Militz, H. (1998). Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh-und Werkstoff, 56(3), 149-153.
  • Wieruszewski, M., & Mazela, B. (2017). Cross Laminated Timber (CLT) as an Alternative Form of Construction Wood. Wood Industry/Drvna Industrija, 68(4).
  • Wójcik, M. (2020). Reframing wood construction: Innovation in architecture through activating material properties with the use of digital technologies.
  • Zelinka, S. L., Passarini, L., Matt, F. J., & Kirker, G. T. (2019). Corrosiveness of thermally modified wood. Forests, 11(1), 50.
  • Żmijewki, T., & Wojtowicz-Jankowska, D. (2017). Timber-Material of the future-Examples of small wooden architectural structures. In IOP Conference Series: Materials Science and Engineering (Vol. 245, No. 8, p. 082019). IOP Publishing.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Sustainable Architecture
Journal Section All Articles
Authors

Şeyma Turan Avcı 0009-0009-7920-7576

Saniye Karaman Öztaş 0000-0003-1955-0013

Project Number 1
Early Pub Date September 19, 2025
Publication Date September 19, 2025
Submission Date January 8, 2025
Acceptance Date August 8, 2025
Published in Issue Year 2025 Volume: 18 Issue: 5

Cite

APA Turan Avcı, Ş., & Karaman Öztaş, S. (2025). Ahşap Teknolojilerinin Süreç ve Performans Kriterleri Bağlamında Değerlendirilmesi: Sürdürülebilir Tasarım ve Üretim Yaklaşımları. Kent Akademisi, 18(5), 2813-2830. https://doi.org/10.35674/kent.1615320

International Refereed and Indexed Journal of Urban Culture and Management | Kent Kültürü ve Yönetimi Uluslararası Hakemli İndeksli Dergi
Information, Communication, Culture, Art and Media Services (ICAM Network) | www.icamnetwork.net
Address: Ahmet Emin Fidan Culture and Research Center, Evkaf Neigh. No: 34 Fatsa Ordu
Tel: +90452 310 20 30 Faks: +90452 310 20 30 | E-Mail: (int): info@icamnetwork.net | (TR) bilgi@icamnetwork.net