Research Article
BibTex RIS Cite

Microbial Characterization of Streptomyces Isolates from Oil Contaminated Soil

Year 2022, , 545 - 559, 15.12.2022
https://doi.org/10.31466/kfbd.1012606

Abstract

In this study, nineteen different Streptomyces strains were isolated from oil-contaminated surface soil at Ataş Oil Terminal in Turkey. Biodegradation and Restriction Fragment Length Polymorphism tests (RFLP) were used for selecting isolates. The isolates belonging to the genus Streptomyces were confirmed by 16S rDNA analysis. 1592r, 1492r, 800r, 518f, and 27f primers were chosen for the 16S rDNA gene amplifying and sequencing. Then 93-unit characters were used to determine phenotypic, physiological, and biochemical properties. All strains can degrade Tween 80, casein, gelatin, hypoxanthine, RNA, L-Tyrosine, elastin. Nevertheless, EL039, EL045, and EL060 soil isolates have better degradation potentials because of gave positive results to eleven degradation tests. According to the obtained results, EL037, EL039, EL060 could be a member of S. albogriseolus, S. rochei, S. mutabilis, respectively, and the phylogenetic tree and characterization tests indicated that especially, EL038, EL045, EL057 could be new members of Streptomyces genus. We perceive that the Streptomyces isolates would benefit biotechnological studies thanks to the degradation enzyme potentials.

Supporting Institution

Ondokuz Mayıs University

Project Number

F-473

Thanks

16S rDNA analysis supported financially by Ondokuz Mayıs University Project No: F-473, Turkey.

References

  • Aigle, B., Lautru, S., Spiteller, D., Dickschat, J. S., Challis, G. L., Leblond, P., & Pernodet, J. L. (2014). Genome mining of Streptomyces ambofaciens. Journal of Industrial Microbiology and Biotechnology, 41(2), 251-263.
  • Anderson, A. S., & Wellington, E. M. (2001). The taxonomy of Streptomyces and related genera. International journal of systematic and evolutionary microbiology, 51(3), 797-814.
  • Arakawa, K. (2018). Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp. Antonie Van Leeuwenhoek, 111(5), 743-751.
  • Ayed, A., Slama, N., Mankai, H., Bachkouel, S., ElKahoui, S., Tabbene, O., & Limam, F. (2018). Streptomyces tunisialbus sp. nov., a novel Streptomyces species with antimicrobial activity. Antonie Van Leeuwenhoek, 111(9), 1571-1581.
  • Baoune, H., El Hadj-Khelil, A. O., Pucci, G., Sineli, P., Loucif, L., & Polti, M. A. (2018). Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria. Ecotoxicology and environmental safety, 147, 602-609.
  • Baoune, H., Aparicio, J. D., Pucci, G., El Hadj-Khelil, A. O., & Polti, M. A. (2019). Bioremediation of petroleum-contaminated soils using Streptomyces sp. Hlh1. Journal of Soils and Sediments, 19(5), 2222-2230.
  • Benhadj, M., Metrouh, R., Menasria, T., Gacemi-Kirane, D., Slim, F. Z., & Ranque, S. (2020). Broad-spectrum antimicrobial activity of wetland-derived Streptomyces sp. ActiF450. EXCLI journal, 19, 360.
  • Boiron, P., Provost, F., & Dupont, B. (1993). Laboratory Methods for the Diagnosis of Nocardiasis. Paris, France: Institut Pasteur Press.
  • Chen, C., Chen, S., Zhang, W., Yuan, F., Yu, J., & Liu, Q. (2020). Streptomyces sp. S501, a Marine Petroleum-Degrading Actinobacterium Isolated from Sediment of Yalujiang Estuary, Northern China, and Its Genome Annotation. Current Microbiology, 77(11), 3643-3650.
  • Chun, J. (1995). Computer-assisted classification and identification of actinomycetes [PhD Thesis]. Newcastle, UK: University of Newcastle upon Tyne.
  • Elnahas, M. O., Hou, L., Wall, J. D., & Majumder, E. L. W. (2021). Bioremediation Potential of Streptomyces sp. MOE6 for Toxic Metals and Oil. Polysaccharides, 2(1), 47-68.
  • Felsenstein, J. (1985). Confdence limits on phylogeny: an approach using the bootstrap. Evolution, 39, 783–791.
  • Ferradji, F. Z., Mnif, S., Badis, A., Rebbani, S., Fodil, D., Eddouaouda, K., & Sayadi, S. (2014). Naphthalene and crude oil degradation by biosurfactant producing Streptomyces spp. isolated from Mitidja plain soil (North of Algeria). International Biodeterioration & Biodegradation, 86, 300-308.
  • Gordon, R. E., Barnett, D. A., Handerhan, J. E., & Pang, C. H. N. (1974). Nocardia coeliaca, Nocardia autotrophica, and the Nocardia strain. International Journal of Systematic and Evolutionary Microbiology, 24(1), 54-63.
  • Gyobu, Y., & Miyadoh, S. (2001). Proposal to transfer Actinomadura carminata to a new subspecies of the genus Nonomuraea as Nonomuraea roseoviolacea subsp. carminata comb. nov. International journal of systematic and evolutionary microbiology, 51(3), 881-889.
  • Haas, D., Gerbaud, C., Sahin, N., Pernodet, J. L., & Lautru, S. (2017). Draft Genome Sequence of Streptomyces sp. M1013, a Close Relative of Streptomyces ambofaciens and Streptomyces coelicolor. Genome announcements, 5(29), e00643-17.
  • Hamed, A., Abdel-Razek, A. S., Frese, M., Wibberg, D., El-Haddad, A. F., Ibrahim, T. M. A., Kalinowski, J., Sewald, N. & Shaaban, M. (2018). N-Acetylborrelidin B: a new bioactive metabolite from Streptomyces mutabilis sp. MII. Zeitschrift für Naturforschung C, 73(1-2), 49-57.
  • Hariprasad, K. V. (2016). Recent advancement in the development of biopesticides by Actinomycetes for the control of insect pests. In Plant Growth Promoting Actinobacteria (pp. 47-62). Springer, Singapore.
  • Harir, M., Bendif, H., Bellahcene, M., Fortas, Z., & Pogni, R. (2018). Streptomyces secondary metabolites. Basic Biology and Applications of actinobacteria, 6, 99-122.
  • Hashimoto, T., Kozone, I., Hashimoto, J., Ueoka, R., Kagaya, N., Fujie, M., Sato, N., Ikeda, H., & Shin-Ya, K. (2020). Novel macrolactam compound produced by the heterologous expression of a large cryptic biosynthetic gene cluster of Streptomyces rochei IFO12908. The Journal of antibiotics, 73(3), 171-174.
  • Jones, K. L. (1949). Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fuctuating characteristic. J Bacteriol., 57, 141–145.
  • Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. Mammalian protein metabolism, 3, 21-132.Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985; 39(4): 783-91.
  • Komaki, H. (2021). Reclassification of 15 Streptomyces species as synonyms of Streptomyces albogriseolus, Streptomyces althioticus, Streptomyces anthocyanicus, Streptomyces calvus, Streptomyces griseoincarnatus, Streptomyces mutabilis, Streptomyces pilosus or Streptomyces rochei. International Journal of Systematic and Evolutionary Microbiology, 71(3), 004718.
  • Komaki, H., & Tamura, T. (2021). Reclassification of Streptomyces cinnamonensis as a later heterotypic synonym of Streptomyces virginiae. International Journal of Systematic and Evolutionary Microbiology, 71(5), 004813.
  • Kelly, K. L. (1964). Color-name charts illustrated with centroid colors. Washinton DC, USA: Inter-Society Color Council-National Bureau of Standards National government publication.
  • Küster, E., & Williams, S. T. (1964). Selection of media for isolation of Streptomycetes. Nature, 202(4935), 928-929.
  • Lane, D. J. (1991). 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics, 115-175.In: Stackebrandt E, Goodfellow M. New York: John Wieley and Sons.
  • Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology, 59(3), 695-700.
  • Nascimento, R. P. D., Reis, A. D., Gírio, F., Pereira, N., Bon, E. P. D. S., & Coelho, R. R. R. (2020). A thermotolerant xylan-degrading enzyme is produced by Streptomyces malaysiensis AMT-3 using by-products from the food industry. Brazilian Archives of Biology and Technology, 63.
  • Nimaichand, S., Devi, A. M., & Li, W. J. (2016). Direct plant growth-promoting ability of actinobacteria in grain legumes. In Plant growth promoting actinobacteria (pp. 1-16). Springer, Singapore.
  • Panter, F., Bader, C. D., & Müller, R. (2021). Synergizing the potential of bacterial genomics and metabolomics to find novel antibiotics. Chemical Science, 12(17), 5994-6010.
  • Patel, P., Patel, G., & Mehta, P. (2020). Extraction and Molecular Characterization of Antimicrobial Metabolites from Streptomyces rochei against Bacterial Leaf Blight of Cotton Caused by Pantoea sp. Asian Journal of Biological and Life Sciences, 9(2), 159.
  • Pitcher, D. G., Saunders, N. A., & Owen, R. J. (1989). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Letters in applied microbiology, 8(4), 151-156.
  • Robl, D., Mergel, C. M., Costa, P. D. S., Pradella, J. G. D. C., & Padilla, G. (2019). Endophytic actinomycetes as potential producers of hemicellulases and related enzymes for plant biomass degradation. Brazilian Archives of Biology and Technology, 62.
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425.
  • Saygin, H. (2021). Genomic insight into the Streptomyces aurantiacus clade: reclassification of Streptomyces ederensis as a later heterotypic synonym of Streptomyces umbrinus and Streptomyces glomeroaurantiacus as a later heterotypic synonym of Streptomyces aurantiacus. International Journal of Systematic and Evolutionary Microbiology, 71(5), 004797.
  • Seong, C. N., Park, J. H., & Baik, K. S. (2001). An improved selective isolation of rare actinomycetes from forest soil. Journal of Microbiology, 39(1), 17-23.
  • Shao, H., Chen, M., Fei, X., Zhang, R., Zhong, Y., Ni, W., Tao, X., He, X., Zhang, E., Yong, B., & Tan, X. (2019). Complete genome sequence and characterization of a polyethylene biodegradation strain, Streptomyces Albogriseolus LBX-2. Microorganisms, 7(10), 379.
  • Sivalingam, P., Hong, K., Pote, J., & Prabakar, K. (2019). Extreme environment Streptomyces: potential sources for new antibacterial and anticancer drug leads? International Journal of Microbiology, 2019.
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30(12), 2725-2729.
  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22(22), 4673-4680.
  • Waksman, S. A. & Henrici, A. T. (1943). The nomenclature and classification of the actinomycetes. J. Bacteriol., 46, 337–341.
  • Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E. M. H., Sneath, P. H. A., & Sackin, M. J. (1983). Numerical classification of Streptomyces and related genera. Microbiology, 129(6), 1743-1813.
  • Wongsariya, K., & Thawai, C. (2019). Antifungal Activity against the Growth of Aflatoxin Producing Fungi from Soil Actinobacteria. Journal of Advanced Agricultural Technologies Vol, 6(3).
  • Viana Marques, D. D. A., Machado, S. E. F., Ebinuma, V. C. S., Duarte, C. D. A. L., Converti, A., & Porto, A. L. F. (2018). Production of β-lactamase inhibitors by Streptomyces species. Antibiotics, 7(3), 61.
  • Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International journal of systematic and evolutionary microbiology, 67(5), 1613.
  • Zhang, Y., Wang, M., Tian, J., Liu, J., Guo, Z., Tang, W., & Chen, Y. (2020). Activation of paulomycin production by exogenous γ-butyrolactone signaling molecules in Streptomyces albidoflavus J1074. Applied microbiology and biotechnology, 104(4), 1695-1705.
  • URL-1: lpsn.dsmz.de [Internet]. Germany: LPSN-List of Prokaryotic names with Standing in Nomenclature Available from: https://lpsn.dsmz.de/genus/streptomyces. (18.04.2022)

Petrolle Kirlenmiş Topraktan Elde Edilen Streptomyces İzolatlarının Mikrobiyal Karakterizasyonu

Year 2022, , 545 - 559, 15.12.2022
https://doi.org/10.31466/kfbd.1012606

Abstract

Bu çalışmada, Türkiye'de Ataş Petrol Terminali'nde yağla kirlenmiş yüzey toprağından on dokuz farklı Streptomyces suşu izole edilmiştir. İzolatların seçiminde Biyobozunma ve Restriksiyon Parça Uzunluk Polimorfizmi (RFLP) testleri kullanılmıştır. Streptomyces cinsine ait izolatlar, 16S rDNA analizi ile doğrulanmıştır. 16S rDNA geni amplifikasyonu ve dizilemesi için 1592r, 1492r, 800r, 518f ve 27f primerleri seçilmiştir. Ardından fenotipik, fizyolojik ve biyokimyasal özellikleri belirlemek için 93 birimlik karakterler kullanılmıştır. Tüm suşlar Tween 80, kazein, jelatin, hipoksantin, RNA, L-tirozin, elastin'i parçalayabilmiştir. Bununla birlikte, EL039, EL045 ve EL060 toprak izolatlarının, on bir bozunma testine de pozitif sonuç verdiğinden daha iyi bozunma potansiyellerine sahip olduğu düşünülmektedir. Elde edilen sonuçlara göre EL037, EL039, EL060 sırasıyla S. albogriseolus, S. rochei, S. mutabilis'in bir üyesi olabilir ve filogenetik ağaç ve karakterizasyon testleri özellikle EL038, EL045, EL057'nin yeni üye olabileceğini göstermiştir. Streptomyces cinsine aittir. Streptomyces izolatlarının degradasyon enzim potansiyelleri sayesinde biyoteknolojik çalışmalara fayda sağlayacağı kanaatindeyiz.

Project Number

F-473

References

  • Aigle, B., Lautru, S., Spiteller, D., Dickschat, J. S., Challis, G. L., Leblond, P., & Pernodet, J. L. (2014). Genome mining of Streptomyces ambofaciens. Journal of Industrial Microbiology and Biotechnology, 41(2), 251-263.
  • Anderson, A. S., & Wellington, E. M. (2001). The taxonomy of Streptomyces and related genera. International journal of systematic and evolutionary microbiology, 51(3), 797-814.
  • Arakawa, K. (2018). Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp. Antonie Van Leeuwenhoek, 111(5), 743-751.
  • Ayed, A., Slama, N., Mankai, H., Bachkouel, S., ElKahoui, S., Tabbene, O., & Limam, F. (2018). Streptomyces tunisialbus sp. nov., a novel Streptomyces species with antimicrobial activity. Antonie Van Leeuwenhoek, 111(9), 1571-1581.
  • Baoune, H., El Hadj-Khelil, A. O., Pucci, G., Sineli, P., Loucif, L., & Polti, M. A. (2018). Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria. Ecotoxicology and environmental safety, 147, 602-609.
  • Baoune, H., Aparicio, J. D., Pucci, G., El Hadj-Khelil, A. O., & Polti, M. A. (2019). Bioremediation of petroleum-contaminated soils using Streptomyces sp. Hlh1. Journal of Soils and Sediments, 19(5), 2222-2230.
  • Benhadj, M., Metrouh, R., Menasria, T., Gacemi-Kirane, D., Slim, F. Z., & Ranque, S. (2020). Broad-spectrum antimicrobial activity of wetland-derived Streptomyces sp. ActiF450. EXCLI journal, 19, 360.
  • Boiron, P., Provost, F., & Dupont, B. (1993). Laboratory Methods for the Diagnosis of Nocardiasis. Paris, France: Institut Pasteur Press.
  • Chen, C., Chen, S., Zhang, W., Yuan, F., Yu, J., & Liu, Q. (2020). Streptomyces sp. S501, a Marine Petroleum-Degrading Actinobacterium Isolated from Sediment of Yalujiang Estuary, Northern China, and Its Genome Annotation. Current Microbiology, 77(11), 3643-3650.
  • Chun, J. (1995). Computer-assisted classification and identification of actinomycetes [PhD Thesis]. Newcastle, UK: University of Newcastle upon Tyne.
  • Elnahas, M. O., Hou, L., Wall, J. D., & Majumder, E. L. W. (2021). Bioremediation Potential of Streptomyces sp. MOE6 for Toxic Metals and Oil. Polysaccharides, 2(1), 47-68.
  • Felsenstein, J. (1985). Confdence limits on phylogeny: an approach using the bootstrap. Evolution, 39, 783–791.
  • Ferradji, F. Z., Mnif, S., Badis, A., Rebbani, S., Fodil, D., Eddouaouda, K., & Sayadi, S. (2014). Naphthalene and crude oil degradation by biosurfactant producing Streptomyces spp. isolated from Mitidja plain soil (North of Algeria). International Biodeterioration & Biodegradation, 86, 300-308.
  • Gordon, R. E., Barnett, D. A., Handerhan, J. E., & Pang, C. H. N. (1974). Nocardia coeliaca, Nocardia autotrophica, and the Nocardia strain. International Journal of Systematic and Evolutionary Microbiology, 24(1), 54-63.
  • Gyobu, Y., & Miyadoh, S. (2001). Proposal to transfer Actinomadura carminata to a new subspecies of the genus Nonomuraea as Nonomuraea roseoviolacea subsp. carminata comb. nov. International journal of systematic and evolutionary microbiology, 51(3), 881-889.
  • Haas, D., Gerbaud, C., Sahin, N., Pernodet, J. L., & Lautru, S. (2017). Draft Genome Sequence of Streptomyces sp. M1013, a Close Relative of Streptomyces ambofaciens and Streptomyces coelicolor. Genome announcements, 5(29), e00643-17.
  • Hamed, A., Abdel-Razek, A. S., Frese, M., Wibberg, D., El-Haddad, A. F., Ibrahim, T. M. A., Kalinowski, J., Sewald, N. & Shaaban, M. (2018). N-Acetylborrelidin B: a new bioactive metabolite from Streptomyces mutabilis sp. MII. Zeitschrift für Naturforschung C, 73(1-2), 49-57.
  • Hariprasad, K. V. (2016). Recent advancement in the development of biopesticides by Actinomycetes for the control of insect pests. In Plant Growth Promoting Actinobacteria (pp. 47-62). Springer, Singapore.
  • Harir, M., Bendif, H., Bellahcene, M., Fortas, Z., & Pogni, R. (2018). Streptomyces secondary metabolites. Basic Biology and Applications of actinobacteria, 6, 99-122.
  • Hashimoto, T., Kozone, I., Hashimoto, J., Ueoka, R., Kagaya, N., Fujie, M., Sato, N., Ikeda, H., & Shin-Ya, K. (2020). Novel macrolactam compound produced by the heterologous expression of a large cryptic biosynthetic gene cluster of Streptomyces rochei IFO12908. The Journal of antibiotics, 73(3), 171-174.
  • Jones, K. L. (1949). Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fuctuating characteristic. J Bacteriol., 57, 141–145.
  • Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. Mammalian protein metabolism, 3, 21-132.Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985; 39(4): 783-91.
  • Komaki, H. (2021). Reclassification of 15 Streptomyces species as synonyms of Streptomyces albogriseolus, Streptomyces althioticus, Streptomyces anthocyanicus, Streptomyces calvus, Streptomyces griseoincarnatus, Streptomyces mutabilis, Streptomyces pilosus or Streptomyces rochei. International Journal of Systematic and Evolutionary Microbiology, 71(3), 004718.
  • Komaki, H., & Tamura, T. (2021). Reclassification of Streptomyces cinnamonensis as a later heterotypic synonym of Streptomyces virginiae. International Journal of Systematic and Evolutionary Microbiology, 71(5), 004813.
  • Kelly, K. L. (1964). Color-name charts illustrated with centroid colors. Washinton DC, USA: Inter-Society Color Council-National Bureau of Standards National government publication.
  • Küster, E., & Williams, S. T. (1964). Selection of media for isolation of Streptomycetes. Nature, 202(4935), 928-929.
  • Lane, D. J. (1991). 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics, 115-175.In: Stackebrandt E, Goodfellow M. New York: John Wieley and Sons.
  • Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology, 59(3), 695-700.
  • Nascimento, R. P. D., Reis, A. D., Gírio, F., Pereira, N., Bon, E. P. D. S., & Coelho, R. R. R. (2020). A thermotolerant xylan-degrading enzyme is produced by Streptomyces malaysiensis AMT-3 using by-products from the food industry. Brazilian Archives of Biology and Technology, 63.
  • Nimaichand, S., Devi, A. M., & Li, W. J. (2016). Direct plant growth-promoting ability of actinobacteria in grain legumes. In Plant growth promoting actinobacteria (pp. 1-16). Springer, Singapore.
  • Panter, F., Bader, C. D., & Müller, R. (2021). Synergizing the potential of bacterial genomics and metabolomics to find novel antibiotics. Chemical Science, 12(17), 5994-6010.
  • Patel, P., Patel, G., & Mehta, P. (2020). Extraction and Molecular Characterization of Antimicrobial Metabolites from Streptomyces rochei against Bacterial Leaf Blight of Cotton Caused by Pantoea sp. Asian Journal of Biological and Life Sciences, 9(2), 159.
  • Pitcher, D. G., Saunders, N. A., & Owen, R. J. (1989). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Letters in applied microbiology, 8(4), 151-156.
  • Robl, D., Mergel, C. M., Costa, P. D. S., Pradella, J. G. D. C., & Padilla, G. (2019). Endophytic actinomycetes as potential producers of hemicellulases and related enzymes for plant biomass degradation. Brazilian Archives of Biology and Technology, 62.
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425.
  • Saygin, H. (2021). Genomic insight into the Streptomyces aurantiacus clade: reclassification of Streptomyces ederensis as a later heterotypic synonym of Streptomyces umbrinus and Streptomyces glomeroaurantiacus as a later heterotypic synonym of Streptomyces aurantiacus. International Journal of Systematic and Evolutionary Microbiology, 71(5), 004797.
  • Seong, C. N., Park, J. H., & Baik, K. S. (2001). An improved selective isolation of rare actinomycetes from forest soil. Journal of Microbiology, 39(1), 17-23.
  • Shao, H., Chen, M., Fei, X., Zhang, R., Zhong, Y., Ni, W., Tao, X., He, X., Zhang, E., Yong, B., & Tan, X. (2019). Complete genome sequence and characterization of a polyethylene biodegradation strain, Streptomyces Albogriseolus LBX-2. Microorganisms, 7(10), 379.
  • Sivalingam, P., Hong, K., Pote, J., & Prabakar, K. (2019). Extreme environment Streptomyces: potential sources for new antibacterial and anticancer drug leads? International Journal of Microbiology, 2019.
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30(12), 2725-2729.
  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22(22), 4673-4680.
  • Waksman, S. A. & Henrici, A. T. (1943). The nomenclature and classification of the actinomycetes. J. Bacteriol., 46, 337–341.
  • Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E. M. H., Sneath, P. H. A., & Sackin, M. J. (1983). Numerical classification of Streptomyces and related genera. Microbiology, 129(6), 1743-1813.
  • Wongsariya, K., & Thawai, C. (2019). Antifungal Activity against the Growth of Aflatoxin Producing Fungi from Soil Actinobacteria. Journal of Advanced Agricultural Technologies Vol, 6(3).
  • Viana Marques, D. D. A., Machado, S. E. F., Ebinuma, V. C. S., Duarte, C. D. A. L., Converti, A., & Porto, A. L. F. (2018). Production of β-lactamase inhibitors by Streptomyces species. Antibiotics, 7(3), 61.
  • Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International journal of systematic and evolutionary microbiology, 67(5), 1613.
  • Zhang, Y., Wang, M., Tian, J., Liu, J., Guo, Z., Tang, W., & Chen, Y. (2020). Activation of paulomycin production by exogenous γ-butyrolactone signaling molecules in Streptomyces albidoflavus J1074. Applied microbiology and biotechnology, 104(4), 1695-1705.
  • URL-1: lpsn.dsmz.de [Internet]. Germany: LPSN-List of Prokaryotic names with Standing in Nomenclature Available from: https://lpsn.dsmz.de/genus/streptomyces. (18.04.2022)
There are 48 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Elif Çil 0000-0003-1420-8729

Kamil Işık 0000-0003-1764-8113

Project Number F-473
Publication Date December 15, 2022
Published in Issue Year 2022

Cite

APA Çil, E., & Işık, K. (2022). Microbial Characterization of Streptomyces Isolates from Oil Contaminated Soil. Karadeniz Fen Bilimleri Dergisi, 12(2), 545-559. https://doi.org/10.31466/kfbd.1012606