Research Article
BibTex RIS Cite

Su Numunelerinde Spektrofotometrik Gadolinyum Tayini

Year 2022, , 1032 - 1040, 15.12.2022
https://doi.org/10.31466/kfbd.1184568

Abstract

Bu çalışmada, Gd3+ iyonlarının tayini için, katyonik yüzey aktif madde olan heksadesiltrimetilamonyum bromür (HDAB) ve ksilen turuncusu indikatörünün kullanılabilirliği incelenmiştir. Geliştirilen metot için yüksek pH değerlerinde Gd3+ içeren sulu çözeltiye ksilen turuncusu ve HDAB ilave edilerek oluşan kompleksin absorbans değerleri spektrofotometre cihazı ile 250-750 nm aralığında okunmuştur. 580 nm de ksilen turuncusu-Gd3+ kompleksi için elde edilen absorbans değerlerinin, ortama HDAB ilavesinden sonra 624 nm’ye kaydığı gözlemlenmiştir. Optimize şartlarda geliştirilen metodun, gadolinyum için tayin sınırı 120 µg L-1, bağıl standart sapma %1,1 ve kalibrasyon aralığı ise 150-800 µg L-1 olarak bulunmuştur. Metodun doğruluğu ise gerçek su numunelerine ekleme/geri kazanım testleriyle belirlenmiştir. %84-96 geri kazanım değerleriyle, geliştirilen metodun içme, dere ve hastane atık suyu numunelerinde gadolinyum tayini için uygulanabileceği görülmüştür.

Supporting Institution

Giresun Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

FEN-BAP-A-270220-3

Thanks

Bu çalışma, Giresun Üniversitesi (Proje no: FEN-BAP-A-270220-23) Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir.

References

  • Aghamohammadhasan, M., Ghashamsham, V., Ghorbani, M., Chamsaz, M., Masrournia, M., Pedramrad, T., and Akhlaghi, H. (2017). Preconcentration of Gadolinium Ion by Solidification of Floating Organic Drop Microextraction and Its Determination by UV-Vis Spectrophotometry. Eurasian Journal of Analytical Chemistry, 12, 1621-1629.
  • Akgun, H., Gonlusen, G., Joiner, J. C., Suki, W. N., and Truong, L. D. (2006). Are gadolinium- based contrast media nephrotoxic?: a renal biopsy study. Archives of Pathology & Laboratory Medicine, 130, 1354-1357.
  • Barge, A., Cravotto, G., Gianolio, E., and Fedeli, F. (2006). How to determine free Gd and free ligand in solution of Gd chelates. A technical note. Contrast Media & Molecular Imaging, 1, 184-188.
  • Bendakovská, L., Krejčová, A., Černohorský, T., and Zelenková, J. (2016). Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment. Chemical Papers, 70, 1155-1165.
  • Brünjes, R., and Hofmann, T. (2020). Anthropogenic gadolinium in freshwater and drinking water systems. Water Research, 182, 115966.
  • Darrah, T. H., Prutsman-Pfeiffer, J. J., Poreda, R. J., Campbell, M. E., Hauschka, P. V., and Hannigan, R.E. (2009). Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics, 1, 479-488.
  • Gibby, W. A., Gibby, K. A., and Kubucek, W. A. (2004). Comparison of Gd DTPA-BMA (Omniscan) versus Gd HP-DO3A (ProHance) Retention in Human Bone Tissue by Inductively Coupled Plasma Atomic Emission Spectroscopy. Investigative Radiology, 39, 138-142.
  • Hassanien, M. M., Kenawy, I. M. M., Khalifa, M. E., and Elnagar, M. M. (2016). Mixed micelle-mediated extraction approach for matrix elimination and separation of some rare earth elements. Microchemical Journal, 127, 125-132.
  • Hennebrüder, K., Wennrich, R., Mattusch, J., Stärk, H. –J., and Engewald, W. (2004). Determination of gadolinium in river water by SPE preconcentration and ICP-MS. Talanta, 63, 309-316.
  • Khalifa, M. E., Mortada, W. I., El-defrawy, M. M., and Awad, A. A. (2019). Selective separation of gadolinium from a series of f-block elements by cloud point extraction and its application for analysis of real samples. Microchemical Journal, 151, 104214.
  • Kubicek, V., Rudovsky, J., Kotek J., Hermann P., Elst, L. V., Muller, R. N., Kolar, Z. I., Wolterbeek, H. Th., Peters, J. A., and Lukes, I. (2005). A Bisphosphonate Monoamide Analogue of DOTA: A Potential Agent for Bone Targeting. Journal of the American Chemical Society, 127, 16477-16485.
  • Li, Y., and Hu, B. (2010). Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological samples. Journal of Hazardous Materials, 174 (1-3), 534-540.
  • Mallah, M. H., Shemirani, F., and Maragheh, M. G. (2009). Ionic Liquids for Simultaneous Preconcentration of Some Lanthanoids Using Dispersive Liquid-Liquid Microextraction Technique in Uranium Dioxide Powder. Environmental Science & Technology, 43, 1947-1951.
  • Mallah, M. H., Shemirani, F., Maragheh, M. G., and Jamali, M. R. (2010). Evaluation of synergism in dispersive liquid-liquid microextraction for simultaneous preconcentration of some lanthanoids. Journal of Molecular Liquids, 151, 122-124.
  • Morais, C. A. de., and Mansur, M. B. (2014). Solvent extraction of gadolinium (III) from hydrochloric acid solutions with cationic extractants D2EHPA and Ionquest 801. Mineral Processing and Extractive Metallurgy, 123, 61-66.
  • Ortega, C., Gomez, M. R., Olsina, R. A., Silva, M. F., and Martinez, L. D. (2002). On-line cloud point preconcentration and determination of gadolinium in urine using flow injection inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 17, 530-533.
  • Réguillon, A. F., Murat, D., and Draye, M. (2011). Study on the Cloud Point Extraction of Gd(III) with 8-Hydroxyquinoline. Separation Science and Technology, 46(4), 611-615.
  • Rodrigues, D. G., Dacheux, N., Rostaing, S. P., Faur, C., Bouyer, D., and Monge, S. (2015). The first report on phosphonate-based homopolymers combining both chelating and thermosensitive properties of gadolinium: synthesis and evaluation. Polymer Chemistry, 6(29), 5264-5272.
  • Rogosnitzky, M., and Branch, S. (2016). Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals, 29, 365-376.
  • Salem, D. B., and Barrat, J.-A. (2021). Determination of rare earth elements in gadolinium-based contrast agents by ICP-MS. Talanta, 221, 121589.
  • Telgmann, L., Sperling, M., and Karst, U. (2013). Determination of gadolinium-based MRI contrast agents in biological and environmental samples: A review. Analytica Chimica Acta, 764, 1-16.
  • Xuejuan, L.,and Zhefeng, F. (2009). Liquid–Liquid–Liquid Micro Extraction Combined with CE for the Determination of Rare Earth Elements in Water Samples. Chromatographia, 70, 481-487.

Spectrophotometric Determination of Gadolinium in Water Samples

Year 2022, , 1032 - 1040, 15.12.2022
https://doi.org/10.31466/kfbd.1184568

Abstract

In this study, the usability of the cationic surfactant hexadecyltrimethylammonium bromide (HDAB) and xylene orange indicator were investigated for the determination of Gd3+ ions. For the developed method, xylene orange and HDAB were added to the aqueous solution containing Gd3+ at high pH values, and the absorbance values of the complex formed with the spectrophotometer instrument were recorded in the range of 250-750 nm. It was observed that the absorbance values obtained for the xylene orange-Gd3+ complex at 580 nm shifted to 624 nm after HDAB addition to the medium. The detection limit for gadolinium was 120 µg L-1, the relative standard deviation was 1.1%, and the calibration interval was 150-800 µg L-1 for the method developed under optimized conditions. The accuracy of the method was determined by adding/recovering tests to real water samples. It has been observed that the developed method can be applied for the determination of gadolinium in drinking, stream, and hospital waste water samples, with recovery values of 84-96%.

Project Number

FEN-BAP-A-270220-3

References

  • Aghamohammadhasan, M., Ghashamsham, V., Ghorbani, M., Chamsaz, M., Masrournia, M., Pedramrad, T., and Akhlaghi, H. (2017). Preconcentration of Gadolinium Ion by Solidification of Floating Organic Drop Microextraction and Its Determination by UV-Vis Spectrophotometry. Eurasian Journal of Analytical Chemistry, 12, 1621-1629.
  • Akgun, H., Gonlusen, G., Joiner, J. C., Suki, W. N., and Truong, L. D. (2006). Are gadolinium- based contrast media nephrotoxic?: a renal biopsy study. Archives of Pathology & Laboratory Medicine, 130, 1354-1357.
  • Barge, A., Cravotto, G., Gianolio, E., and Fedeli, F. (2006). How to determine free Gd and free ligand in solution of Gd chelates. A technical note. Contrast Media & Molecular Imaging, 1, 184-188.
  • Bendakovská, L., Krejčová, A., Černohorský, T., and Zelenková, J. (2016). Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment. Chemical Papers, 70, 1155-1165.
  • Brünjes, R., and Hofmann, T. (2020). Anthropogenic gadolinium in freshwater and drinking water systems. Water Research, 182, 115966.
  • Darrah, T. H., Prutsman-Pfeiffer, J. J., Poreda, R. J., Campbell, M. E., Hauschka, P. V., and Hannigan, R.E. (2009). Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics, 1, 479-488.
  • Gibby, W. A., Gibby, K. A., and Kubucek, W. A. (2004). Comparison of Gd DTPA-BMA (Omniscan) versus Gd HP-DO3A (ProHance) Retention in Human Bone Tissue by Inductively Coupled Plasma Atomic Emission Spectroscopy. Investigative Radiology, 39, 138-142.
  • Hassanien, M. M., Kenawy, I. M. M., Khalifa, M. E., and Elnagar, M. M. (2016). Mixed micelle-mediated extraction approach for matrix elimination and separation of some rare earth elements. Microchemical Journal, 127, 125-132.
  • Hennebrüder, K., Wennrich, R., Mattusch, J., Stärk, H. –J., and Engewald, W. (2004). Determination of gadolinium in river water by SPE preconcentration and ICP-MS. Talanta, 63, 309-316.
  • Khalifa, M. E., Mortada, W. I., El-defrawy, M. M., and Awad, A. A. (2019). Selective separation of gadolinium from a series of f-block elements by cloud point extraction and its application for analysis of real samples. Microchemical Journal, 151, 104214.
  • Kubicek, V., Rudovsky, J., Kotek J., Hermann P., Elst, L. V., Muller, R. N., Kolar, Z. I., Wolterbeek, H. Th., Peters, J. A., and Lukes, I. (2005). A Bisphosphonate Monoamide Analogue of DOTA: A Potential Agent for Bone Targeting. Journal of the American Chemical Society, 127, 16477-16485.
  • Li, Y., and Hu, B. (2010). Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological samples. Journal of Hazardous Materials, 174 (1-3), 534-540.
  • Mallah, M. H., Shemirani, F., and Maragheh, M. G. (2009). Ionic Liquids for Simultaneous Preconcentration of Some Lanthanoids Using Dispersive Liquid-Liquid Microextraction Technique in Uranium Dioxide Powder. Environmental Science & Technology, 43, 1947-1951.
  • Mallah, M. H., Shemirani, F., Maragheh, M. G., and Jamali, M. R. (2010). Evaluation of synergism in dispersive liquid-liquid microextraction for simultaneous preconcentration of some lanthanoids. Journal of Molecular Liquids, 151, 122-124.
  • Morais, C. A. de., and Mansur, M. B. (2014). Solvent extraction of gadolinium (III) from hydrochloric acid solutions with cationic extractants D2EHPA and Ionquest 801. Mineral Processing and Extractive Metallurgy, 123, 61-66.
  • Ortega, C., Gomez, M. R., Olsina, R. A., Silva, M. F., and Martinez, L. D. (2002). On-line cloud point preconcentration and determination of gadolinium in urine using flow injection inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 17, 530-533.
  • Réguillon, A. F., Murat, D., and Draye, M. (2011). Study on the Cloud Point Extraction of Gd(III) with 8-Hydroxyquinoline. Separation Science and Technology, 46(4), 611-615.
  • Rodrigues, D. G., Dacheux, N., Rostaing, S. P., Faur, C., Bouyer, D., and Monge, S. (2015). The first report on phosphonate-based homopolymers combining both chelating and thermosensitive properties of gadolinium: synthesis and evaluation. Polymer Chemistry, 6(29), 5264-5272.
  • Rogosnitzky, M., and Branch, S. (2016). Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals, 29, 365-376.
  • Salem, D. B., and Barrat, J.-A. (2021). Determination of rare earth elements in gadolinium-based contrast agents by ICP-MS. Talanta, 221, 121589.
  • Telgmann, L., Sperling, M., and Karst, U. (2013). Determination of gadolinium-based MRI contrast agents in biological and environmental samples: A review. Analytica Chimica Acta, 764, 1-16.
  • Xuejuan, L.,and Zhefeng, F. (2009). Liquid–Liquid–Liquid Micro Extraction Combined with CE for the Determination of Rare Earth Elements in Water Samples. Chromatographia, 70, 481-487.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Articles
Authors

Zekeriyya Bahadır 0000-0002-7035-1258

Project Number FEN-BAP-A-270220-3
Publication Date December 15, 2022
Published in Issue Year 2022

Cite

APA Bahadır, Z. (2022). Su Numunelerinde Spektrofotometrik Gadolinyum Tayini. Karadeniz Fen Bilimleri Dergisi, 12(2), 1032-1040. https://doi.org/10.31466/kfbd.1184568