Research Article
BibTex RIS Cite

Investigation of the Effect of Feed Rate on Vibration in Aluminum Milling

Year 2023, , 483 - 492, 15.06.2023
https://doi.org/10.31466/kfbd.1224730

Abstract

In this study, the effects of the feed rate parameter in the milling process were investigated. For this purpose, Al7075 material was milled with feed rates of 0.1, 0.15, 0.2, 0.25 and 0.3 mm/rev, keeping other machining parameters constant. Milling was done along the part for each feed value. Vibration was measured with the connected device on the workpiece during milling. Vibration values were evaluated statistically and the effect of progress on vibration was discussed. According to the data obtained from the vibration measurement, in general, the increase in the feed at constant speed reduced the vibration. With the decrease in the cutting ability of the tool, the standard deviation of the data increased and a more irregular vibration pattern was detected. The results obtained will support the processes of determining the optimum feed value in milling.

References

  • Antonialli, A. I. S., Diniz, A. E., & Pederiva, R. (2010). Vibration analysis of cutting force in titanium alloy milling. International Journal of Machine Tools and Manufacture, 50(1), 65-74.
  • Bhogal, S. S., Sindhu, C., Dhami, S. S., & Pabla, B. S. (2015). Minimization of surface roughness and tool vibration in CNC milling operation. Journal of Optimization, 2015.
  • Gomes, S., Renaudin, G., Hagemann, H., Yvon, K., Sulic, M. P., & Jensen, C. M. (2005). Effects of milling, doping and cycling of NaAlH4 studied by vibrational spectroscopy and X-ray diffraction. Journal of alloys and compounds, 390(1-2), 305-313.
  • Guo, M., Ye, Y., Jiang, X., & Wu, C. (2020). Comprehensive effect of multi-parameters on vibration in high-speed precision milling. The International Journal of Advanced Manufacturing Technology, 108(7), 2187-2195.
  • Jiang, H., Long, X., & Meng, G. (2008). Study of the correlation between surface generation and cutting vibrations in peripheral milling. Journal of Materials Processing Technology, 208(1-3), 229-238.
  • Khorasani, A. M., Saadatkia, P., & Kootsookos, A. (2012). Tool vibration prediction and optimisation in face milling of Al 7075 and St 52 by using neural networks and genetic algorithm. International Journal of Machining and Machinability of Materials, 12(1-2), 142-153.
  • Kulekci, M. K., Uğur, E. Ş. M. E., Ekşi, A. K., Koçoğlu, Z., & YILMAZ, N. F. (2017). En Aw 5754 (Almg3) alüminyum alaşımının frezelenmesi işleminde kesme parametrelerinin yüzey pürüzlülüğüne etkisinin incelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(2), 153-160.
  • Niu, Q., Jing, L., Wang, C., Li, S., Qiu, X., Li, C., & Xiang, D. (2020). Study on effect of vibration amplitude on cutting performance of SiCp/Al composites during ultrasonic vibration–assisted milling. The International Journal of Advanced Manufacturing Technology, 106(5), 2219-2225.
  • Rashid, A., & Nicolescu, C. M. (2006). Active vibration control in palletised workholding system for milling. International Journal of Machine Tools and Manufacture, 46(12-13), 1626-1636.
  • Salehi, M., Albertelli, P., Goletti, M., Ripamonti, F., Tomasini, G., & Monno, M. (2015). Indirect model based estimation of cutting force and tool tip vibrational behavior in milling machines by sensor fusion. Procedia CIRP, 33, 239-244.
  • Sasaki, K., Masuda, T., Ishida, H., & Mitsuda, T. (1996). Structural degradation of tobermorite during vibratory milling. Journal of the American Ceramic Society, 79(6), 1569-1574.
  • Shaik, J. H. (2017). Optimal selection of operating parameters in end milling of Al-6061 work materials using multi-objective approach. Mechanics of Advanced Materials and Modern Processes, 3(1), 1-11.
  • Subramanian, M., Sakthivel, M., Sooryaprakash, K., & Sudhakaran, R. (2013). Optimization of end mill tool geometry parameters for Al7075-T6 machining operations based on vibration amplitude by response surface methodology. Measurement, 46(10), 4005-4022.
  • Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics (Vol. 5, pp. 481-498). Boston, MA: pearson.
  • Toh, C. K. (2004). Vibration analysis in high speed rough and finish milling hardened steel. Journal of Sound and Vibration, 278(1-2), 101-115.
  • Yang, B., Guo, K., Liu, J., Sun, J., Song, G., Zhu, S., ... & Jiang, Z. (2020). Vibration singularity analysis for milling tool condition monitoring. International Journal of Mechanical Sciences, 166, 105254.
  • Yesilyurt, I., & Ozturk, H. (2007). Tool condition monitoring in milling using vibration analysis. International journal of production research, 45(4), 1013-1028.
  • YILDIZ, M., & SARUHAN, H. (2018). Experimental Vibration Analysis of Titanium Aluminum Nitride (TiAlN) Coated Milling Cutting Tool Effects on Surface Roughness of AISI 4140 Steel Products. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 6(4), 745-753.
  • YILMAZ, V., Dilipak, H., SARIKAYA, M., YILMAZ, C., & Meral, G. (2014). Frezeleme işlemlerinde titreşimi ve yüzey pürüzlülüğünü etkileyen parametrelerin optimizasyonu. Teknik Bilimler Dergisi, 4(1), 37-44.
  • Caixu, Y. U. E., Haining, G. A. O., Xianli, L. I. U., Liang, S. Y., & Lihui, W. A. N. G. (2019). A review of chatter vibration research in milling. Chinese Journal of Aeronautics, 32(2), 215-242.

Alüminyum Frezelemede İlerleme Hızının Titreşime Etkisinin İncelenmesi

Year 2023, , 483 - 492, 15.06.2023
https://doi.org/10.31466/kfbd.1224730

Abstract

Bu çalışmada, frezeleme işleminde ilerleme hızı parametresinin etkileri araştırılmıştır. Bu amaçla Al7075 malzemesi diğer işleme parametreleri sabit tutularak 0.1, 0.15, 0.2, 0.25 ve 0.3 mm/dev ilerleme hızları ile frezelenmiştir. Her bir ilerleme değeri için parça boyunca kanal frezeleme yapılmıştır. Frezeleme sırasında iş parçasında bağlı cihaz ile titreşim ölçülmüştür. Titreşim değerleri istatistiksel olarak değerlendirilmiş ve ilerlemenin titreşime etkisi tartışılmıştır. Titreşim ölçümünden elde edilen verilere göre genel olarak, sabit devirde ilerlemenin artışı titreşimi azaltmıştır. Takımın kesme kabiliyetinin azalması ile verilerin standart sapması artmış ve daha düzensiz bir titreşim seyri tespit edilmiştir. Elde edilen sonuçlar frezelemede optimum ilerleme değeri belirleme çalışmalarına destek olacak niteliktedir.

References

  • Antonialli, A. I. S., Diniz, A. E., & Pederiva, R. (2010). Vibration analysis of cutting force in titanium alloy milling. International Journal of Machine Tools and Manufacture, 50(1), 65-74.
  • Bhogal, S. S., Sindhu, C., Dhami, S. S., & Pabla, B. S. (2015). Minimization of surface roughness and tool vibration in CNC milling operation. Journal of Optimization, 2015.
  • Gomes, S., Renaudin, G., Hagemann, H., Yvon, K., Sulic, M. P., & Jensen, C. M. (2005). Effects of milling, doping and cycling of NaAlH4 studied by vibrational spectroscopy and X-ray diffraction. Journal of alloys and compounds, 390(1-2), 305-313.
  • Guo, M., Ye, Y., Jiang, X., & Wu, C. (2020). Comprehensive effect of multi-parameters on vibration in high-speed precision milling. The International Journal of Advanced Manufacturing Technology, 108(7), 2187-2195.
  • Jiang, H., Long, X., & Meng, G. (2008). Study of the correlation between surface generation and cutting vibrations in peripheral milling. Journal of Materials Processing Technology, 208(1-3), 229-238.
  • Khorasani, A. M., Saadatkia, P., & Kootsookos, A. (2012). Tool vibration prediction and optimisation in face milling of Al 7075 and St 52 by using neural networks and genetic algorithm. International Journal of Machining and Machinability of Materials, 12(1-2), 142-153.
  • Kulekci, M. K., Uğur, E. Ş. M. E., Ekşi, A. K., Koçoğlu, Z., & YILMAZ, N. F. (2017). En Aw 5754 (Almg3) alüminyum alaşımının frezelenmesi işleminde kesme parametrelerinin yüzey pürüzlülüğüne etkisinin incelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(2), 153-160.
  • Niu, Q., Jing, L., Wang, C., Li, S., Qiu, X., Li, C., & Xiang, D. (2020). Study on effect of vibration amplitude on cutting performance of SiCp/Al composites during ultrasonic vibration–assisted milling. The International Journal of Advanced Manufacturing Technology, 106(5), 2219-2225.
  • Rashid, A., & Nicolescu, C. M. (2006). Active vibration control in palletised workholding system for milling. International Journal of Machine Tools and Manufacture, 46(12-13), 1626-1636.
  • Salehi, M., Albertelli, P., Goletti, M., Ripamonti, F., Tomasini, G., & Monno, M. (2015). Indirect model based estimation of cutting force and tool tip vibrational behavior in milling machines by sensor fusion. Procedia CIRP, 33, 239-244.
  • Sasaki, K., Masuda, T., Ishida, H., & Mitsuda, T. (1996). Structural degradation of tobermorite during vibratory milling. Journal of the American Ceramic Society, 79(6), 1569-1574.
  • Shaik, J. H. (2017). Optimal selection of operating parameters in end milling of Al-6061 work materials using multi-objective approach. Mechanics of Advanced Materials and Modern Processes, 3(1), 1-11.
  • Subramanian, M., Sakthivel, M., Sooryaprakash, K., & Sudhakaran, R. (2013). Optimization of end mill tool geometry parameters for Al7075-T6 machining operations based on vibration amplitude by response surface methodology. Measurement, 46(10), 4005-4022.
  • Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics (Vol. 5, pp. 481-498). Boston, MA: pearson.
  • Toh, C. K. (2004). Vibration analysis in high speed rough and finish milling hardened steel. Journal of Sound and Vibration, 278(1-2), 101-115.
  • Yang, B., Guo, K., Liu, J., Sun, J., Song, G., Zhu, S., ... & Jiang, Z. (2020). Vibration singularity analysis for milling tool condition monitoring. International Journal of Mechanical Sciences, 166, 105254.
  • Yesilyurt, I., & Ozturk, H. (2007). Tool condition monitoring in milling using vibration analysis. International journal of production research, 45(4), 1013-1028.
  • YILDIZ, M., & SARUHAN, H. (2018). Experimental Vibration Analysis of Titanium Aluminum Nitride (TiAlN) Coated Milling Cutting Tool Effects on Surface Roughness of AISI 4140 Steel Products. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 6(4), 745-753.
  • YILMAZ, V., Dilipak, H., SARIKAYA, M., YILMAZ, C., & Meral, G. (2014). Frezeleme işlemlerinde titreşimi ve yüzey pürüzlülüğünü etkileyen parametrelerin optimizasyonu. Teknik Bilimler Dergisi, 4(1), 37-44.
  • Caixu, Y. U. E., Haining, G. A. O., Xianli, L. I. U., Liang, S. Y., & Lihui, W. A. N. G. (2019). A review of chatter vibration research in milling. Chinese Journal of Aeronautics, 32(2), 215-242.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Articles
Authors

Burak Özdemir 0000-0002-5870-0398

Erkan Bahçe 0000-0001-5389-5571

Mehmet Sami Güler 0000-0003-0414-7707

Early Pub Date June 15, 2023
Publication Date June 15, 2023
Published in Issue Year 2023

Cite

APA Özdemir, B., Bahçe, E., & Güler, M. S. (2023). Alüminyum Frezelemede İlerleme Hızının Titreşime Etkisinin İncelenmesi. Karadeniz Fen Bilimleri Dergisi, 13(2), 483-492. https://doi.org/10.31466/kfbd.1224730