Research Article
BibTex RIS Cite

Elektrikli Araçlar için DA Hızlı Şarj Cihazı Tasarımı ve Simülasyonu

Year 2023, , 1322 - 1337, 15.12.2023
https://doi.org/10.31466/kfbd.1247810

Abstract

Elektrikli araçlar geleneksel fosil yakıtlı araçlarla kıyasla sıfır emisyon, azaltılmış bakım maliyetleri, daha yüksek motor verimliliği, gelişmiş sürüş konforu gibi önemli avantajlar sunmaktadır. Ancak, sınırlı menzil kapasitesi, şarj altyapısının eksikliği ve uzun şarj süreleri gibi zorluklar, elektrikli araçların yaygın olarak benimsenmesinin önünde önemli engeller oluşturmaktadır. Elektrikli araçların geliştirilmesi sürecinde, büyük bir öneme sahip olan kritik bileşenler arasında, batarya ve şarj sistemleri dikkate değer bir role sahiptir. Bu çalışma, 45kWh pil kapasitesiyle donatılmış bir elektrikli araç için 90kW DA hızlı şarj cihazının tasarımı ve simülasyonuna odaklanmaktadır. Önerilen sistem ile bataryanın %20’den %80’e doluluk oranına ulaşması için gereken toplam şarj süresinin 30 dakikanın altına indirilmesi hedeflenmektedir. Tasarlanan DA hızlı şarj cihazı; aktif güç faktörü düzeltici işlevini gerçekleştiren bir AA/DA dönüştürücü ve şarj işlevini gerçekleştiren bir DA/DA dönüştürücüden oluşmaktadır. Önerilen hızlı şarj sisteminin geçerliliği ve etkinliği simülasyon sonuçları ile doğrulanmıştır.

References

  • Abdel-Rahman, S., Stückler, F., and Siu, K. (2016). PFC Boost Converter Design Guide. Infineon application note, 2(1), 1-30.
  • Acikgoz, H., Coteli, R., Ustundag, M., and Dandil, B. (2018). Robust control of current controlled PWM rectifiers using type-2 fuzzy neural networks for unity power factor operation. Journal of Electrical Engineering and Technology, 13(2), 822-828.
  • Açıkgöz, H., Keçecioğlu, Ö. F., and Şekkeli, M. (2019). Real-time implementation of electronic power transformer based on intelligentcontroller. Turkish Journal of Electrical Engineering and Computer Sciences, 27(4), 2866-2880.
  • Alharbi, M., Dahidah, M., Pickert, V., and Yu, J. (2019, February). Comparison of SiC-based DC-DC Modular Converters for EV Fast DC Chargers. 2019 IEEE International Conference on Industrial Technology (ICIT), (pp. 1681-1688). Melbourne, VIC, Australia.
  • Almamoori, N.A., Dziadak, B., and Sabry, A.H. (2022). Design of a closed-loop autotune PID controller for three-phase for power factor corrector with Vienna rectifier. Bulletin of Electrical Engineering and Informatics, 11(4), 1798-1806.
  • Balcı, I., Bodur, H., ve Gündoğan, A. (2022). Tek Fazlı Tek Aşamalı İzoleli Güç Faktörü Düzeltme Devrelerinin İncelenmesi. ELECO 2022 Elektrik-Elektronik ve Biyomedikal Mühendisliği Konferansı, Bursa, 24-26 Kasım.
  • Chen, Y., Dai, W. p., Zhou, J., and Hu, E. (2014). Study and design of a novel three‐phase bridgeless boost power factor correction. IET Power Electronics, 7(8), 2013-2021.
  • Cittanti, D., Vico, E., Gregorio, M., Mandrile, F., and Bojoi, R. (2020, November). Iterative Design of a 60 kW All-Si Modular LLC Converter for Electric Vehicle Ultra-Fast Charging. 2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), (pp. 1-6). Turin, Italy.
  • Cittanti, D., Gregorio, M., Bossotto, E., Mandrile, F., and Bojoi, R. (2021). Full digital control and multi-loop tuning of a three-level T-type rectifier for electric vehicle ultra-fast battery chargers. Electronics, 10(12), 1453.
  • Çetin, S. (2017). High Efficiency Design Approach of a LLC Resonant Converter for On-Board Electrical Vehicle Battery Charge Applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(2), 103-111.
  • Güven, A. F., and Akbaşak, S. B. (2021). DC Fast Charging Station Modeling and Control for Electric Vehicles. Karadeniz Fen Bilimleri Dergisi, 11(2), 680-704.
  • Güven, A. F., ve Akbaşak, S. B. (2021). Elektrikli Araçlarda DA Hızlı Şarj Ünitelerinin Şebeke Altyapısına Etkilerinin İncelenmesi. Sinop Üniversitesi Fen Bilimleri Dergisi, 6(1), 42-54.
  • Hassanzadeh, N., Yazdani, F., Haghbin, S., and Thiringer, T. (2017). Design Of a 50 kW Phase-Shifted Full-Bridge Converter Used For Fast Charging Applications. 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), (pp.1-5), Belfort, France.
  • Kaba, M. Y., Kalkan, O., ve Celen, A. (2021). Elektrikli Araçlarda Kullanılan Bataryalar ve Termal Yönetim Sistemlerinin İncelenmesi. Konya Mühendislik Bilimleri Dergisi, 9(4), 1119-1136.
  • Khalid, M., Ahmad, F., Panigrahi, B. K., and Al-Fagih, L. (2022). A comprehensive review on advanced charging topologies and methodologies for electric vehicle battery. Journal of Energy Storage, 53(1), 105084.
  • Kılıç, E. (2019). DA-DA Yükselten Dönüştürücü ile Elektrikli Araç Batarya Şarj Cihazı Tasarımı. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 22(4), 281-287.
  • Kongjeen, Y., Junlakan, W., Bhumkittipich, K., and Mithulananthan, N. (2018). Estimation of the quick charging station for electric vehicles based on location and population density data. International Journal of Intelligent Engineering and Systems, 11(3), 233-241.
  • Liu, J., Loo, K., Wang, G., Zhang, X., and Wu, T. (2023). Asymmetric Modulation of Bridgeless Single‐Stage Full‐Bridge AC–DC Converter for Active Power Factor Correction and Zero Voltage Switching. IET Power Electronics, 1-14.
  • Nasir, A., Hamad, M.S., and Elshenawy, A.K. (2021). Design and Development of a Constant Current Constant Voltage Fast Battery Charger for Electric Vehicles. 4th International Conference on Modern Research in Science, Engineering and Technology, (pp.13-55), Berlin, Germany.
  • Nurmuhammed, M. ve Karadağ, T. (2021). Elektrikli Araç Şarj İstasyonlarının Konumlandırılması ve Enerji Şebekesi Üzerine Etkisi Konulu Derleme Çalışması. Gazi University Journal of Science Part A: Engineering and Innovation, 8(2), 218-233.
  • Pul, T. (2019). Design and Implementation of a 130KW, 750VDC Bidirectional PWM Rectifier Supplied from 400V, 50Hz Grid. Master's Thesis, Middle East Technical University, Natural and Applied Sciences, Ankara.
  • Rubino, L., Capasso, C., and Veneri, O. (2017). Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility. Applied Energy, 207(1), 438-464.
  • Sbordone, D., Bertini, I., Di Pietra, B., Falvo, M. C., Genovese, A., and Martirano, L. (2015). EV fast charging stations and energy storage technologies: A real implementation in the smart micro grid paradigm. Electric Power Systems Research, 120(1), 96-108.
  • Shukla, H. (2016). Vector Control of Three-Phase Active Front End Rectifier. International Journal for Innovative Research in Science & Technology, 2(9), 261-268.
  • Sezer, K. C., ve Basmacı, G. (2022). Şarj Edilebilir Pillere Genel Bakış. Mühendislik Bilimleri ve Tasarım Dergisi, 10(1), 297-309.
  • URL-1: https://www.mathworks.com/help/sps/ug/dc-fast-charger.html, (Erişim Tarihi: 01.10.2022). URL-2: https://www.dolubatarya.com/togg-sedan-ozellikler, (Erişim Tarihi: 12.01.2023).
  • Yoon, Hm., Kim, Jh., and Song, Eh. (2013). Design of a novel 50 kW fast charger for electric vehicles. Journal of Central South University, 20(2), 372-377.
  • Young, K., Wang, C., Wang, L. Y., and Strunz, K. (2013). Electric vehicle battery technologies, in Electric vehicle integration into modern power networks, Springer, 15-56.
  • Yüksek, H.İ., ve Arifoğlu, U. (2020). Modeling of Three-Phase Three-Level Rectifier with Space Vector Pulse Width Modulation Method in Matlab/Simulink Program. Sigma J Eng & Nat Sci 38 (1), 227-251.

Design and Simulation of DC Fast Charger for Electric Vehicle

Year 2023, , 1322 - 1337, 15.12.2023
https://doi.org/10.31466/kfbd.1247810

Abstract

Compared to traditional fossil fuel vehicles, electric vehicles offer significant advantages such as zero emissions, reduced maintenance costs, higher engine efficiency, and improved driving comfort. However, challenges such as limited range capacity, lack of charging infrastructure and long charging times pose significant barriers to widespread adoption of electric vehicles. Among the critical components of great importance in the analysis and development of electric vehicles, the battery and charging system play a particularly noteworthy role. This study focuses on the design and simulation of a 90kW DC fast charger for an electric vehicle equipped with a 45kWh battery capacity. With the proposed system, it is aimed to reduce the total charging time required for the battery to reach the charge rate from 20% to 80% below 30 minutes. Designed DA fast charger; It consists of an AC/DC converter performing the active power factor corrector function and a DC/DA converter performing the charging function. The validity and efficiency of the proposed fast charging system has been verified by simulation results.

References

  • Abdel-Rahman, S., Stückler, F., and Siu, K. (2016). PFC Boost Converter Design Guide. Infineon application note, 2(1), 1-30.
  • Acikgoz, H., Coteli, R., Ustundag, M., and Dandil, B. (2018). Robust control of current controlled PWM rectifiers using type-2 fuzzy neural networks for unity power factor operation. Journal of Electrical Engineering and Technology, 13(2), 822-828.
  • Açıkgöz, H., Keçecioğlu, Ö. F., and Şekkeli, M. (2019). Real-time implementation of electronic power transformer based on intelligentcontroller. Turkish Journal of Electrical Engineering and Computer Sciences, 27(4), 2866-2880.
  • Alharbi, M., Dahidah, M., Pickert, V., and Yu, J. (2019, February). Comparison of SiC-based DC-DC Modular Converters for EV Fast DC Chargers. 2019 IEEE International Conference on Industrial Technology (ICIT), (pp. 1681-1688). Melbourne, VIC, Australia.
  • Almamoori, N.A., Dziadak, B., and Sabry, A.H. (2022). Design of a closed-loop autotune PID controller for three-phase for power factor corrector with Vienna rectifier. Bulletin of Electrical Engineering and Informatics, 11(4), 1798-1806.
  • Balcı, I., Bodur, H., ve Gündoğan, A. (2022). Tek Fazlı Tek Aşamalı İzoleli Güç Faktörü Düzeltme Devrelerinin İncelenmesi. ELECO 2022 Elektrik-Elektronik ve Biyomedikal Mühendisliği Konferansı, Bursa, 24-26 Kasım.
  • Chen, Y., Dai, W. p., Zhou, J., and Hu, E. (2014). Study and design of a novel three‐phase bridgeless boost power factor correction. IET Power Electronics, 7(8), 2013-2021.
  • Cittanti, D., Vico, E., Gregorio, M., Mandrile, F., and Bojoi, R. (2020, November). Iterative Design of a 60 kW All-Si Modular LLC Converter for Electric Vehicle Ultra-Fast Charging. 2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), (pp. 1-6). Turin, Italy.
  • Cittanti, D., Gregorio, M., Bossotto, E., Mandrile, F., and Bojoi, R. (2021). Full digital control and multi-loop tuning of a three-level T-type rectifier for electric vehicle ultra-fast battery chargers. Electronics, 10(12), 1453.
  • Çetin, S. (2017). High Efficiency Design Approach of a LLC Resonant Converter for On-Board Electrical Vehicle Battery Charge Applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(2), 103-111.
  • Güven, A. F., and Akbaşak, S. B. (2021). DC Fast Charging Station Modeling and Control for Electric Vehicles. Karadeniz Fen Bilimleri Dergisi, 11(2), 680-704.
  • Güven, A. F., ve Akbaşak, S. B. (2021). Elektrikli Araçlarda DA Hızlı Şarj Ünitelerinin Şebeke Altyapısına Etkilerinin İncelenmesi. Sinop Üniversitesi Fen Bilimleri Dergisi, 6(1), 42-54.
  • Hassanzadeh, N., Yazdani, F., Haghbin, S., and Thiringer, T. (2017). Design Of a 50 kW Phase-Shifted Full-Bridge Converter Used For Fast Charging Applications. 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), (pp.1-5), Belfort, France.
  • Kaba, M. Y., Kalkan, O., ve Celen, A. (2021). Elektrikli Araçlarda Kullanılan Bataryalar ve Termal Yönetim Sistemlerinin İncelenmesi. Konya Mühendislik Bilimleri Dergisi, 9(4), 1119-1136.
  • Khalid, M., Ahmad, F., Panigrahi, B. K., and Al-Fagih, L. (2022). A comprehensive review on advanced charging topologies and methodologies for electric vehicle battery. Journal of Energy Storage, 53(1), 105084.
  • Kılıç, E. (2019). DA-DA Yükselten Dönüştürücü ile Elektrikli Araç Batarya Şarj Cihazı Tasarımı. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 22(4), 281-287.
  • Kongjeen, Y., Junlakan, W., Bhumkittipich, K., and Mithulananthan, N. (2018). Estimation of the quick charging station for electric vehicles based on location and population density data. International Journal of Intelligent Engineering and Systems, 11(3), 233-241.
  • Liu, J., Loo, K., Wang, G., Zhang, X., and Wu, T. (2023). Asymmetric Modulation of Bridgeless Single‐Stage Full‐Bridge AC–DC Converter for Active Power Factor Correction and Zero Voltage Switching. IET Power Electronics, 1-14.
  • Nasir, A., Hamad, M.S., and Elshenawy, A.K. (2021). Design and Development of a Constant Current Constant Voltage Fast Battery Charger for Electric Vehicles. 4th International Conference on Modern Research in Science, Engineering and Technology, (pp.13-55), Berlin, Germany.
  • Nurmuhammed, M. ve Karadağ, T. (2021). Elektrikli Araç Şarj İstasyonlarının Konumlandırılması ve Enerji Şebekesi Üzerine Etkisi Konulu Derleme Çalışması. Gazi University Journal of Science Part A: Engineering and Innovation, 8(2), 218-233.
  • Pul, T. (2019). Design and Implementation of a 130KW, 750VDC Bidirectional PWM Rectifier Supplied from 400V, 50Hz Grid. Master's Thesis, Middle East Technical University, Natural and Applied Sciences, Ankara.
  • Rubino, L., Capasso, C., and Veneri, O. (2017). Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility. Applied Energy, 207(1), 438-464.
  • Sbordone, D., Bertini, I., Di Pietra, B., Falvo, M. C., Genovese, A., and Martirano, L. (2015). EV fast charging stations and energy storage technologies: A real implementation in the smart micro grid paradigm. Electric Power Systems Research, 120(1), 96-108.
  • Shukla, H. (2016). Vector Control of Three-Phase Active Front End Rectifier. International Journal for Innovative Research in Science & Technology, 2(9), 261-268.
  • Sezer, K. C., ve Basmacı, G. (2022). Şarj Edilebilir Pillere Genel Bakış. Mühendislik Bilimleri ve Tasarım Dergisi, 10(1), 297-309.
  • URL-1: https://www.mathworks.com/help/sps/ug/dc-fast-charger.html, (Erişim Tarihi: 01.10.2022). URL-2: https://www.dolubatarya.com/togg-sedan-ozellikler, (Erişim Tarihi: 12.01.2023).
  • Yoon, Hm., Kim, Jh., and Song, Eh. (2013). Design of a novel 50 kW fast charger for electric vehicles. Journal of Central South University, 20(2), 372-377.
  • Young, K., Wang, C., Wang, L. Y., and Strunz, K. (2013). Electric vehicle battery technologies, in Electric vehicle integration into modern power networks, Springer, 15-56.
  • Yüksek, H.İ., ve Arifoğlu, U. (2020). Modeling of Three-Phase Three-Level Rectifier with Space Vector Pulse Width Modulation Method in Matlab/Simulink Program. Sigma J Eng & Nat Sci 38 (1), 227-251.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Erdal Kılıç 0000-0002-1572-6109

Early Pub Date December 18, 2023
Publication Date December 15, 2023
Published in Issue Year 2023

Cite

APA Kılıç, E. (2023). Elektrikli Araçlar için DA Hızlı Şarj Cihazı Tasarımı ve Simülasyonu. Karadeniz Fen Bilimleri Dergisi, 13(4), 1322-1337. https://doi.org/10.31466/kfbd.1247810