Research Article
BibTex RIS Cite

Calculation of Optimum Transit Times with Real-Coded Genetic Algorithm

Year 2023, , 833 - 842, 15.09.2023
https://doi.org/10.31466/kfbd.1249873

Abstract

Electron energy analysers have been designed to analyse charged-particle beams at specific energies. The design is based on the principle that electrons with different energies arrive at the detector at different times. Since electrons with different energies follow different orbits within these analysers. In collision experiments, it is very important to determine the trajectories and transit times of the charged particles in the analyser. In this study, optimum solutions for transit times of charged particles were provided using a real-coded genetic algorithm. Hyper parameters and types of genetic algorithm were obtained using trial and error methods, in this study. The results of this study indicate that genetic algorithm gives time resolution values in a wide data set with high accuracy. The results show that genetic algorithms (GA) are a fascinating approach for solving search and optimization problems.

References

  • Baguenard B., Wills J. B., Pagliarulo F., Lépine F., Climen B., Barbaire M., Clavier C., Lebeault M. A., Bordas C., (2004). Velocity-map imaging electron spectrometer with time resolution, Rev Sci Instrum 75, 324–328.
  • Caprari, R. S., (1995). Exit position and transit-time analysis of hemispherical electrostatic analysers, Measurement Science & Technology, 6(7), 1063–1064.
  • Davis, L., (1991). Handbook of genetic algorithms,
  • Dogan, M., Sise O., Ulu M., (2007). Design of electron energy analyzers for electron impact studies, Radiation Physics and Chemistry 76 445-449.
  • Goldberg, D.E., (1989). Genetic algorithms in search optimization and machine learning. Addison Wesley, Reading Menlo Park.
  • Goldberg, D.E., Holland, J.H. (1988). Genetic algorithms and machine learning. Machine learning; 3: 95-99.
  • Heddle, D.W.O., (2000). Electrostatic Lens Systems, IOP Press, London,
  • Imhof, R. E., Adams A., King G. C., (1976) Energy and time resolution of the 180 degrees hemispherical electrostatic analyser, Journal of Physics E 9 138.
  • Ince, M., Isik, N., (2020) Optimization of Base Energy Resolution in Hemispherical Deflector Analyzer by using Genetic Algorithm, Celal Bayar University Journal of Science 16 345-349.
  • Isik N., (2016). Determination of Electron Optical Properties for Aperture Zoom Lenses Using an Artificial Neural Network Method, Microscopy and Microanalysis 22 458-462.
  • Isik, A.H. (2015a). The investigation of electron-optical parameters using artificial neural networks. Acta Phys Pol A 127, 1317–1319.
  • Isik, A.H. (2015b). Prediction of two-element cylindrical electrostatic lens parameters using dynamic artificial neural network Acta Phys Pol A 127, 1717–1721.
  • Isik, A.H., Isik N., (2016a). Time Series Artificial Neural Network Approach for Prediction of Optical Lens Properties 129 514-516.
  • Isik, N., Isik, A. H., Sise O., Guvenc U., (2017). Prediction of First Order Focusing Properties of Ideal Hemispherical Deflector Analyzer Using Artificial Neural Network”, APhysPolA,131,
  • Isik, N., Isik, A.H., (2016b). Classification of Electron Gun Operation Modes Using Artificial Neural Networks, Acta Phys. Pol. A 129, 628
  • Jiang, J., Chen M. and Fan J. A. (2020). Deep neural networks for the evaluation and design of photonic devices, Nature Reviews Materials, 6(8).
  • Kugeler, O., Marburger S., and Hergenhahn U., (2003). Calculation and measurement of the time-of-flight spread in a hemispherical electron energy analyzer, Review of Scientific Instruments, vol. 74, no. 9, pp. 3955–3961,
  • Lower, J., Weigold E., Improved techniques in multipara meter coincidence experiments, Journal of Physics E 22 (1989) 421.
  • Paszkowicz, W. (2009). Genetic Algorithms, a Nature-Inspired Tool: Survey of Applications in Materials Science and Related Fields, Materials and Manufacturing Processes, 24(2), 174-197,
  • Shavorskiy, A., Neppl, S. ano Slaughter D. S., Cryan James P., Siefermann Katrin R., Weise Fabian , Lin Ming-Fu , Bacellar Camila , Ziemkiewicz Michael P., Zegkinoglou Ioannis, Fraund Matthew W., Khurmi Champak,, Hertlein Marcus P., Wright Travis W., Huse Nils, Schoenlein Robert W., Tyliszczak Tolek , Coslovich Giacomo , Robinson Joseph, Kaindl Robert A. , Rude Bruce S., Ölsner Andreas , Mähl Sven, Bluhm Hendrik, and Gessner Oliver (2014). Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources, Review of Scientific Instruments, 85(9), 093102.
  • Sise, O, Zouros T. J. M., (2016). Transit time spreads in biased paracentric hemispherical deflection analysers, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 369, 95-97.
  • Sise, O. and Zouros T. J. M., (2015). Position, Energy, and Transit Time Distributions in a Hemispherical Deflector Analyzer with Position Sensitive Detector, Journal of Spectroscopy, 8, 1-20,
  • Völkel, M., Sandner W., (1983). Optimisation of electron energy analysers for application in coincidence experiments, Journal of Physics. E 16 456-462.
  • Yildirim M., Sise O., Dogan M., Kilic H. S., (2009). Designing multi-field linear time-of-flight mass spectrometers with higher-order space focusing, Int. J. Mass Spect. 291 1-12.
  • Zouros, T. J. M., Benis E. P., (2005), Optimal energy resolution of a hemispherical analyzer with virtual entry, Applied Physics Letters, 1, 86-88.

Gerçek Kodlu Genetik Algoritma ile Optimum Geçiş Sürelerinin Hesaplanması

Year 2023, , 833 - 842, 15.09.2023
https://doi.org/10.31466/kfbd.1249873

Abstract

Elektron enerjisi analizörleri, belirli enerjilerdeki yüklü parçacık ışınlarını analiz etmek için tasarlanmıştır. Tasarım, farklı enerjilerdeki elektronların dedektöre farklı zamanlarda ulaşması prensibine dayanmaktadır. Farklı enerjilere sahip elektronlar bu analizörlerde farklı yörüngeler takip ettiğinden. Çarpışma deneylerinde yüklü parçacıkların analizördeki yörüngelerinin ve geçiş sürelerinin belirlenmesi çok önemlidir. Bu çalışmada, yüklü parçacıkların geçiş süreleri için gerçek kodlu bir genetik algoritma kullanılarak optimum çözümler sağlanmıştır. Bu çalışmada hiper parametreler ve genetik algoritma türleri deneme yanılma yöntemleri kullanılarak elde edilmiştir. Bu çalışmanın sonuçları, genetik algoritmanın geniş bir veri kümesinde zaman çözünürlük değerlerini yüksek doğrulukla verdiğini göstermektedir. Sonuçlar, genetik algoritmaların (GA) arama ve optimizasyon problemlerini çözmek için ilgi çekici bir yaklaşım olduğunu göstermektedir.

Thanks

Yazar, yararlı tartışmalar için Ali Hakan IŞIK ve Mehmet BİLEN'e teşekkür eder.

References

  • Baguenard B., Wills J. B., Pagliarulo F., Lépine F., Climen B., Barbaire M., Clavier C., Lebeault M. A., Bordas C., (2004). Velocity-map imaging electron spectrometer with time resolution, Rev Sci Instrum 75, 324–328.
  • Caprari, R. S., (1995). Exit position and transit-time analysis of hemispherical electrostatic analysers, Measurement Science & Technology, 6(7), 1063–1064.
  • Davis, L., (1991). Handbook of genetic algorithms,
  • Dogan, M., Sise O., Ulu M., (2007). Design of electron energy analyzers for electron impact studies, Radiation Physics and Chemistry 76 445-449.
  • Goldberg, D.E., (1989). Genetic algorithms in search optimization and machine learning. Addison Wesley, Reading Menlo Park.
  • Goldberg, D.E., Holland, J.H. (1988). Genetic algorithms and machine learning. Machine learning; 3: 95-99.
  • Heddle, D.W.O., (2000). Electrostatic Lens Systems, IOP Press, London,
  • Imhof, R. E., Adams A., King G. C., (1976) Energy and time resolution of the 180 degrees hemispherical electrostatic analyser, Journal of Physics E 9 138.
  • Ince, M., Isik, N., (2020) Optimization of Base Energy Resolution in Hemispherical Deflector Analyzer by using Genetic Algorithm, Celal Bayar University Journal of Science 16 345-349.
  • Isik N., (2016). Determination of Electron Optical Properties for Aperture Zoom Lenses Using an Artificial Neural Network Method, Microscopy and Microanalysis 22 458-462.
  • Isik, A.H. (2015a). The investigation of electron-optical parameters using artificial neural networks. Acta Phys Pol A 127, 1317–1319.
  • Isik, A.H. (2015b). Prediction of two-element cylindrical electrostatic lens parameters using dynamic artificial neural network Acta Phys Pol A 127, 1717–1721.
  • Isik, A.H., Isik N., (2016a). Time Series Artificial Neural Network Approach for Prediction of Optical Lens Properties 129 514-516.
  • Isik, N., Isik, A. H., Sise O., Guvenc U., (2017). Prediction of First Order Focusing Properties of Ideal Hemispherical Deflector Analyzer Using Artificial Neural Network”, APhysPolA,131,
  • Isik, N., Isik, A.H., (2016b). Classification of Electron Gun Operation Modes Using Artificial Neural Networks, Acta Phys. Pol. A 129, 628
  • Jiang, J., Chen M. and Fan J. A. (2020). Deep neural networks for the evaluation and design of photonic devices, Nature Reviews Materials, 6(8).
  • Kugeler, O., Marburger S., and Hergenhahn U., (2003). Calculation and measurement of the time-of-flight spread in a hemispherical electron energy analyzer, Review of Scientific Instruments, vol. 74, no. 9, pp. 3955–3961,
  • Lower, J., Weigold E., Improved techniques in multipara meter coincidence experiments, Journal of Physics E 22 (1989) 421.
  • Paszkowicz, W. (2009). Genetic Algorithms, a Nature-Inspired Tool: Survey of Applications in Materials Science and Related Fields, Materials and Manufacturing Processes, 24(2), 174-197,
  • Shavorskiy, A., Neppl, S. ano Slaughter D. S., Cryan James P., Siefermann Katrin R., Weise Fabian , Lin Ming-Fu , Bacellar Camila , Ziemkiewicz Michael P., Zegkinoglou Ioannis, Fraund Matthew W., Khurmi Champak,, Hertlein Marcus P., Wright Travis W., Huse Nils, Schoenlein Robert W., Tyliszczak Tolek , Coslovich Giacomo , Robinson Joseph, Kaindl Robert A. , Rude Bruce S., Ölsner Andreas , Mähl Sven, Bluhm Hendrik, and Gessner Oliver (2014). Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources, Review of Scientific Instruments, 85(9), 093102.
  • Sise, O, Zouros T. J. M., (2016). Transit time spreads in biased paracentric hemispherical deflection analysers, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 369, 95-97.
  • Sise, O. and Zouros T. J. M., (2015). Position, Energy, and Transit Time Distributions in a Hemispherical Deflector Analyzer with Position Sensitive Detector, Journal of Spectroscopy, 8, 1-20,
  • Völkel, M., Sandner W., (1983). Optimisation of electron energy analysers for application in coincidence experiments, Journal of Physics. E 16 456-462.
  • Yildirim M., Sise O., Dogan M., Kilic H. S., (2009). Designing multi-field linear time-of-flight mass spectrometers with higher-order space focusing, Int. J. Mass Spect. 291 1-12.
  • Zouros, T. J. M., Benis E. P., (2005), Optimal energy resolution of a hemispherical analyzer with virtual entry, Applied Physics Letters, 1, 86-88.
There are 25 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Articles
Authors

Nimet Işık 0000-0002-1347-6628

Publication Date September 15, 2023
Published in Issue Year 2023

Cite

APA Işık, N. (2023). Calculation of Optimum Transit Times with Real-Coded Genetic Algorithm. Karadeniz Fen Bilimleri Dergisi, 13(3), 833-842. https://doi.org/10.31466/kfbd.1249873