Research Article
BibTex RIS Cite

Anaerobik Biyoreaktördeki Sığır Gübresinin Biyometan Veriminin Termal Ön İşlemlerle Artırılması

Year 2023, , 652 - 664, 15.06.2023
https://doi.org/10.31466/kfbd.1256566

Abstract

Ülkemizde ve Dünyada hayvancılığın artması ile ortaya çıkan hayvansal atık miktarı çevre kirliliğinin en önemli kaynaklarından biri olmuştur. Hayvansal organik atıkların biyogaz üretiminde kullanılması, atık bertarafında ve atıklardan enerji geri kazanımında verimli bir atık yönetimi adımıdır. Bu çalışmada, sığır gübresinin mezofilik koşullar altında kesikli reaktörlerde anaerobik sindirim (AS) sonucu biyogaz ve metan (CH4) verimi incelenmiştir. Ardından kesikli reaktörlerdeki AS kalıntısına 60 °C, 80 °C, 100 °C ve 120 °C'de 4 saat termal ön işlemler uygulanmıştır. Ön işlemsiz sığır gübresinin CH4 verimi 203,5 ml/g uçucu katı (UK) iken 120 °C termal ön işlemli sığır gübresinin kümülatif CH4 verimi 251,7 ml/g UK olarak belirlenmiştir. Termal ön işlemler sayesinde sığır gübresinin birim kütle başına CH4 verimi kümülatif olarak en fazla %23,6 kadar artırılmıştır. Termal ön işlemler ile lignoselülozik bileşenlerin (selüloz, hemiselüloz ve lignin) çözünme verimleri incelenmiştir. Aynı zamanda tüm anaerobik süreç sonunda toplam kimyasal oksijen ihtiyaçları ve UK miktarlarının giderim verimleri belirlenmiştir. Çalışma bulguları Türkiye’de üretim yapan büyük ölçekli biyogaz tesisleri için kullanılabilir niteliktedir.

Supporting Institution

Gİresun Üniversitesi

Project Number

FEN-BAP-A-250221-27

Thanks

Bu çalışma Giresun Üniversitesi Bilimsel Araştırmalar Birimi tarafından FEN-BAP-A-250221-27 nolu proje ile desteklenmiştir. İlgili kuruma desteklerinden dolayı yazarlar olarak teşekkürlerimizi sunarız.

References

  • Abd Allah, W.E., El-Wahab, A., Hassan, M., & Tawfik, M. (2016). Study on biogas unit using dairy cattle dung during winter in Egypt. Zagazig Journal of Agricultural Research, 43(3), 1051-1057.
  • Alqaralleh, R.M., Kennedy, K., & Delatolla, R. (2019). Microwave vs. alkaline-microwave pretreatment for enhancing thickened waste activated sludge and fat, oil, and grease solubilization, degradation and biogas production. Journal of Environmental Management, 233, 378-392.
  • Ayhan, K., & Şenol, H. (n.d.). Endüstriyel Anaerobik Reaktörler İçin Enerji Dönüşümünün Hızlandırılmasına Yönelik Bir Çalışma. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 17(2), 349-358.
  • Cavinato, C., Fatone, F., Bolzonella, D., & Pavan, P. (2010). Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: comparison of pilot and full scale experiences. Bioresource Technology, 101(2), 545-550.
  • Deepanraj, B., Sivasubramanian, V., & Jayaraj, S. (2017). Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste. International Journal of Hydrogen Energy, 42(42), 26522-26528.
  • Ennouri, H., Miladi, B., Diaz, S.Z., Güelfo, L.A.F., Solera, R., Hamdi, M., & Bouallagui, H. (2016). Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge. Bioresource Technology, 214, 184-191.
  • Fang, W., Weisheng, N., Andong, Z., Weiming, Y. (2015). Enhanced anaerobic digestion of corn stover by thermo-chemical pretreatment. International Journal of Agricultural and Biological Engineering, 8(1), 84-90.
  • Ferreira, L., Donoso-Bravo, A., Nilsen, P., Fdz-Polanco, F., & Pérez-Elvira, S. (2013). Influence of thermal pretreatment on the biochemical methane potential of wheat straw. Bioresource Technology, 143, 251- 257.
  • Font-Palma, C. (2019). Methods for the treatment of cattle manure a review. Journal of Carbon Research, 5(2), 27.
  • Jaffar, M., Pang, Y., Yuan, H., Zou, D., Liu, Y., Zhu, B., Korai, R. M., Li, X. (2016). Wheat straw pretreatment with KOH for enhancing biomethane production and fertilizer value in anaerobic digestion. Chinese Journal of Chemical Engineering, 24(3), 404-409.
  • Koçar, G., Eryaşar, A., Ersöz, Ö., Arıcı, Ş., & Durmuş, A. (2010). Biogas technologies. Izmir: Ege University Printing Office.
  • Lehtomäki, A., Huttunen, S., & Rintala, J. (2007). Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resources, Conservation and Recycling, 51(3), 591-609.
  • Onwosi, C.O., Ozoegwu, C.G., Nwagu, T.N., Nwobodo, T.N., Eke, I.E., Igbokwe, V.C., Ugwuoji, E.T.,
  • Ugwuodo, C.J. (2022). Cattle manure as a sustainable bioenergy source: Prospects and environmental impacts of its utilization as a major feedstock in Nigeria. Bioresource Technology Reports, 101151.
  • Öztürk, M. (2005). Biogas production from animal manure. Republic of Turkey Ministry of Environment and Urbanisation, Ankara, 5, 8-18.
  • Rajput, A.A., Visvanathan, C. (2018). Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw. Journal of Environmental Management, 221, 45-52.
  • Rice, E.W., Bridgewater, L., Association, A.P.H. (2012). Standard methods for the examination of water and wastewater. American public health association Washington, DC.
  • Rios, M., Kaltschmitt, M. (2016). Electricity generation potential from biogas produced from organic waste in Mexico. Renewable and Sustainable Energy Reviews, 54, 384-395.
  • Şenol, H. (2019). Biogas potential of hazelnut shells and hazelnut wastes in Giresun City. Biotechnology Reports, 24, e00361.
  • Şenol, H. (2020a). Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves. Bioresource Technology, 300, 122660.
  • Şenol, H. (2020b). Enhancement in methane yield from anaerobic co‐digestion of walnut shells and cattle manure. Environmental Progress & Sustainable Energy, 39(6), e13524.
  • Şenol, H. (2020c). Identification of new critical points for logistics model in cumulative methane yield curves after co‐digestion of apple pulp and chicken manure with sulphuric acid pretreatment and ®A new modelling study. International Journal of Energy Research, 44(7), 6078-6087.
  • Şenol, H. (2020d). Karadeniz bölgesinin mutfak atıklarından biyogaz potansiyeli. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(7), 1291-1298.
  • Şenol, H. (2021). Effects of NaOH, thermal, and combined NaOH-thermal pretreatments on the biomethane yields from the anaerobic digestion of walnut shells. Environmental Science and Pollution Research, 28(17), 21661-21673.
  • Şenol, H. (2022). Anaerobic digestion of cattle manure after ultrasonic pretreatment under different conditions. International Journal of Engineering and Innovative Research, 4(3), 178-190.
  • Şenol, H., Açıkel, Ü., Demir, S., Oda, V. (2020a). Anaerobic digestion of cattle manure, corn silage and sugar beet pulp mixtures after thermal pretreatment and kinetic modeling study. Fuel, 263, 116651.
  • Şenol, H., Ayhan, K., Atasoy, S., Erşan, M. (2022). Anaerobik Sindirimde Nanopartikül Konsantrasyonunun Cevap Yüzey Yöntemi ile Optimizasyonu. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 17(1), 211-221.
  • Şenol, H., Dereli̇, M.A., Özbilgin, F. (2021). Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030. Renewable and Sustainable Energy Reviews, 149, 111338.
  • Şenol, H., Erşan, M., Görgün, E. (2020b). Biogas production from the co-digestion of urban solid waste and cattle manure. European Journal of Science and Technology, 396-403.
  • Şenol, H., Erşan, M., Görgün, E. (2020c). Optimization of temperature and pretreatments for methane yield of hazelnut shells using the response surface methodology. Fuel, 271, 117585.
  • Tufaner, F., Demirci, Y. (2020). Prediction of biogas production rate from anaerobic hybrid reactor by artificial neural network and nonlinear regressions models. Clean Technologies and Environmental Policy, 22, 713-724.
  • URL-1:https://proteus-instruments.com/parameters/chemical-oxygen-demand-cod- sensors/#:~:text=Chemical%20Oxygen%20Demand%20(COD)%20is,or%20Nitrate%2C%20present 20in%20water, (Erişim Tarihi: 10 Şubat 2023).
  • Van Soest, P.v., Robertson, J.B., Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597.
  • Xavier, C.A., Moset, V., Wahid, R., Møller, H.B. (2015). The efficiency of shredded and briquetted wheat straw in anaerobic co-digestion with dairy cattle manure. Biosystems Engineering, 139, 16-24.

Increasing the Biomethane Production of Cattle Manure in Anaerobic Bioreactor by Thermal Pretreatments

Year 2023, , 652 - 664, 15.06.2023
https://doi.org/10.31466/kfbd.1256566

Abstract

The amount of animal waste resulting from the increase in animal husbandry in our country and in the world has become one of the most important sources of environmental pollution. The use of animal organic wastes in biogas production is an efficient waste management step in waste disposal and energy recovery from waste. In this study, biogas and methane (CH4) yield of cattle manure as a result of anaerobic digestion (AD) in batch reactors under mesophilic conditions were investigated. Then, thermal pretreatments were applied to the AD residue in batch reactors at 60 °C, 80 °C, 100 °C and 120 °C for 4 hours. While the CH4 yield of untreated cattle manure was 203.5 mL/g volatile solids (VS), the cumulative CH4 yield of 120 °C thermal pretreated cattle manure was determined as 251.7 mL/g VS. Thanks to thermal pre-treatments, the CH4 yield per unit mass of cattle manure was increased by a maximum of 23.6% cumulatively. The dissolution efficiency of lignocellulosic components (cellulose, hemicellulose and lignin) with thermal pretreatments were investigated. At the same time, at the end of the whole anaerobic process, the total chemical oxygen needs and the removal efficiency of VS amounts were determined. The findings of the study can be used for large-scale biogas plants producing in Turkey.

Project Number

FEN-BAP-A-250221-27

References

  • Abd Allah, W.E., El-Wahab, A., Hassan, M., & Tawfik, M. (2016). Study on biogas unit using dairy cattle dung during winter in Egypt. Zagazig Journal of Agricultural Research, 43(3), 1051-1057.
  • Alqaralleh, R.M., Kennedy, K., & Delatolla, R. (2019). Microwave vs. alkaline-microwave pretreatment for enhancing thickened waste activated sludge and fat, oil, and grease solubilization, degradation and biogas production. Journal of Environmental Management, 233, 378-392.
  • Ayhan, K., & Şenol, H. (n.d.). Endüstriyel Anaerobik Reaktörler İçin Enerji Dönüşümünün Hızlandırılmasına Yönelik Bir Çalışma. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 17(2), 349-358.
  • Cavinato, C., Fatone, F., Bolzonella, D., & Pavan, P. (2010). Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: comparison of pilot and full scale experiences. Bioresource Technology, 101(2), 545-550.
  • Deepanraj, B., Sivasubramanian, V., & Jayaraj, S. (2017). Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste. International Journal of Hydrogen Energy, 42(42), 26522-26528.
  • Ennouri, H., Miladi, B., Diaz, S.Z., Güelfo, L.A.F., Solera, R., Hamdi, M., & Bouallagui, H. (2016). Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge. Bioresource Technology, 214, 184-191.
  • Fang, W., Weisheng, N., Andong, Z., Weiming, Y. (2015). Enhanced anaerobic digestion of corn stover by thermo-chemical pretreatment. International Journal of Agricultural and Biological Engineering, 8(1), 84-90.
  • Ferreira, L., Donoso-Bravo, A., Nilsen, P., Fdz-Polanco, F., & Pérez-Elvira, S. (2013). Influence of thermal pretreatment on the biochemical methane potential of wheat straw. Bioresource Technology, 143, 251- 257.
  • Font-Palma, C. (2019). Methods for the treatment of cattle manure a review. Journal of Carbon Research, 5(2), 27.
  • Jaffar, M., Pang, Y., Yuan, H., Zou, D., Liu, Y., Zhu, B., Korai, R. M., Li, X. (2016). Wheat straw pretreatment with KOH for enhancing biomethane production and fertilizer value in anaerobic digestion. Chinese Journal of Chemical Engineering, 24(3), 404-409.
  • Koçar, G., Eryaşar, A., Ersöz, Ö., Arıcı, Ş., & Durmuş, A. (2010). Biogas technologies. Izmir: Ege University Printing Office.
  • Lehtomäki, A., Huttunen, S., & Rintala, J. (2007). Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resources, Conservation and Recycling, 51(3), 591-609.
  • Onwosi, C.O., Ozoegwu, C.G., Nwagu, T.N., Nwobodo, T.N., Eke, I.E., Igbokwe, V.C., Ugwuoji, E.T.,
  • Ugwuodo, C.J. (2022). Cattle manure as a sustainable bioenergy source: Prospects and environmental impacts of its utilization as a major feedstock in Nigeria. Bioresource Technology Reports, 101151.
  • Öztürk, M. (2005). Biogas production from animal manure. Republic of Turkey Ministry of Environment and Urbanisation, Ankara, 5, 8-18.
  • Rajput, A.A., Visvanathan, C. (2018). Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw. Journal of Environmental Management, 221, 45-52.
  • Rice, E.W., Bridgewater, L., Association, A.P.H. (2012). Standard methods for the examination of water and wastewater. American public health association Washington, DC.
  • Rios, M., Kaltschmitt, M. (2016). Electricity generation potential from biogas produced from organic waste in Mexico. Renewable and Sustainable Energy Reviews, 54, 384-395.
  • Şenol, H. (2019). Biogas potential of hazelnut shells and hazelnut wastes in Giresun City. Biotechnology Reports, 24, e00361.
  • Şenol, H. (2020a). Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves. Bioresource Technology, 300, 122660.
  • Şenol, H. (2020b). Enhancement in methane yield from anaerobic co‐digestion of walnut shells and cattle manure. Environmental Progress & Sustainable Energy, 39(6), e13524.
  • Şenol, H. (2020c). Identification of new critical points for logistics model in cumulative methane yield curves after co‐digestion of apple pulp and chicken manure with sulphuric acid pretreatment and ®A new modelling study. International Journal of Energy Research, 44(7), 6078-6087.
  • Şenol, H. (2020d). Karadeniz bölgesinin mutfak atıklarından biyogaz potansiyeli. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(7), 1291-1298.
  • Şenol, H. (2021). Effects of NaOH, thermal, and combined NaOH-thermal pretreatments on the biomethane yields from the anaerobic digestion of walnut shells. Environmental Science and Pollution Research, 28(17), 21661-21673.
  • Şenol, H. (2022). Anaerobic digestion of cattle manure after ultrasonic pretreatment under different conditions. International Journal of Engineering and Innovative Research, 4(3), 178-190.
  • Şenol, H., Açıkel, Ü., Demir, S., Oda, V. (2020a). Anaerobic digestion of cattle manure, corn silage and sugar beet pulp mixtures after thermal pretreatment and kinetic modeling study. Fuel, 263, 116651.
  • Şenol, H., Ayhan, K., Atasoy, S., Erşan, M. (2022). Anaerobik Sindirimde Nanopartikül Konsantrasyonunun Cevap Yüzey Yöntemi ile Optimizasyonu. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 17(1), 211-221.
  • Şenol, H., Dereli̇, M.A., Özbilgin, F. (2021). Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030. Renewable and Sustainable Energy Reviews, 149, 111338.
  • Şenol, H., Erşan, M., Görgün, E. (2020b). Biogas production from the co-digestion of urban solid waste and cattle manure. European Journal of Science and Technology, 396-403.
  • Şenol, H., Erşan, M., Görgün, E. (2020c). Optimization of temperature and pretreatments for methane yield of hazelnut shells using the response surface methodology. Fuel, 271, 117585.
  • Tufaner, F., Demirci, Y. (2020). Prediction of biogas production rate from anaerobic hybrid reactor by artificial neural network and nonlinear regressions models. Clean Technologies and Environmental Policy, 22, 713-724.
  • URL-1:https://proteus-instruments.com/parameters/chemical-oxygen-demand-cod- sensors/#:~:text=Chemical%20Oxygen%20Demand%20(COD)%20is,or%20Nitrate%2C%20present 20in%20water, (Erişim Tarihi: 10 Şubat 2023).
  • Van Soest, P.v., Robertson, J.B., Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597.
  • Xavier, C.A., Moset, V., Wahid, R., Møller, H.B. (2015). The efficiency of shredded and briquetted wheat straw in anaerobic co-digestion with dairy cattle manure. Biosystems Engineering, 139, 16-24.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

İlkay Türk Çakır 0000-0003-3397-9238

Halil Şenol 0000-0003-3056-5013

Ersin Kaygusuz 0000-0001-5382-0190

Project Number FEN-BAP-A-250221-27
Early Pub Date June 15, 2023
Publication Date June 15, 2023
Published in Issue Year 2023

Cite

APA Türk Çakır, İ., Şenol, H., & Kaygusuz, E. (2023). Anaerobik Biyoreaktördeki Sığır Gübresinin Biyometan Veriminin Termal Ön İşlemlerle Artırılması. Karadeniz Fen Bilimleri Dergisi, 13(2), 652-664. https://doi.org/10.31466/kfbd.1256566