Research Article
BibTex RIS Cite

Investigation of The Effect of Using Different Type of Fin on The Melting Time of PCM in A Latent Thermal Energy Storage Unit Using CaCl2 .6H2O and Na2SO4.10H2O Phase Change Materials by CFD Analysis

Year 2023, , 701 - 723, 15.06.2023
https://doi.org/10.31466/kfbd.1277463

Abstract

In this study, a double tube concentric heat exchanger was designed to store thermal energy by utilizing the latent heat storage properties of CaCl2.6H2O (calcium chloride hexahydrate) and Na2SO4.10H2O (sodium chloride decahydrate) inorganic phase change materials (PCM). Computational Fluid Dynamics (CFD) analyzes were performed with the help of ANSYS Fluent commercial program for 50 0C, 60 0C and 70 0C ITA (heat transfer fluid) water temperatures selected in accordance with the operational waste heat values. With the two-dimensional and time-dependent analyzes, the PCM melting time analyzes were completed first in the finless state and then in the case of placing a different type of fin in the PCM in order to increase the heat transfer. Different from the literature, the fin effectiveness of 6,9,12,15 finned models, which were determined by ANSYS analysis as 2.2, 3.3, 4.4, 5.5, respectively, were at 60 °C, which was determined as the optimum waste heat temperature compared to the finless model. It was observed that CaCl2.6H2O melted in 140 minutes and Na2SO4.10H2O in 180 minutes in the finless state. The reason for this situation is that the thermal conductivity coefficient of CaCl2.6H2O is higher. With the increase in the number of fins compared to the finless condition, the melting times decreased by 71.42%, 75.71%, 79.28% and 82.14% for CaCl2.6H2O phase change material, and 73.33%, 77.77%, 80% and 81.66% for Na2 SO4.10H2O. According to the results of the analysis, it was determined that the melting time of PCM decreased with the increase in ITA temperature and the number of fins, and heat energy was transferred from heat transfer fluid to phase change material more quickly.

References

  • Acir, A. and Canli, M. E. (2018). Investigation of fin application effects on melting time in a latent thermal energy storage system with phase change material (PCM). Applied Thermal Engineering,144.
  • ANSYS, (2008) Inc. Fluent Theory Guide, USA, November 28, Chp:21.1-14.
  • Ao, C., Yan, S., Zhao, L., Wu,Y. (2023). Assessment on the effect of longitudinal fins upon melting process in a latent heat thermal energy storage unit. Journal of Energy Storage, 59.
  • Barba, A., and Spiga, M. (2003). Discharge mode for encapsulated PCMs in storage tanks. Solar Energy, 74(2), 141–148.
  • Bédécarrats, J., Strub, F., Falcon, B., and Dumas, J. (1996). Phase-change thermal energy storage sing spherical capsules: performance of a test plant. International Journal of Refrigeration, 9(3),187–196.
  • Bilen, K., Takgil, F., and Kaygusuz K. (2008). Thermal energy storage behavior of CaCl2.6H2O during melting and solidification. Energy Sources, Part A, 30:775–787.
  • Carlsson, B., and Wettermark, G. (1980). Heat transfer properties of a heat of fusion store based on CaCl2 6H2O. Solar Energy, 24, 239–47.
  • Castell, A., Solé, C., Medrano, M., Roca, J., Cabeza, L. F., and García, D. (2008). Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Applied Thermal Engineering, 28 (13), 1676–1686.
  • Çengel, Y. A. and Cimbala, J. M. (2006). Akışkanlar mekaniği temelleri ve uygulamaları. İzmir: Güven Bilimsel Yayınevi. 818-830.
  • Çengel, Y. A., (2015) Heat and mass transfer: Principles and applications. Ankara: Palme Pub.
  • Çengel, Y. A., (2015) Thermodynamics: with an engineering approach. Ankara: Palme Pub.
  • El Qarnia, H., A. Draoui, A., and Lakhal, E.K. (2013). "Computation of melting with natural convection inside a rectangular enclosure heated by discrete protruding heat sources. Applied Mathematical Modeling, 37 (6), 3968-3981.
  • Esen, M., Durmuş, A., and Durmuş, A. (1998). Geometric design of solar-aided latent heat store depending on various parameters and phase change materials. Solar Energy, 62(1), 19–28.
  • Hasnain, S. M. (1998). Review on sustainable thermal energy storage Technologies., Part 1: heat storage materials and techniques. Energy Conversion and Management, 39 (11), 1127–38.
  • Ismail, K.A.R., Alves, C.L.F., Modesto, M. (2001). Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Applied Thermal Engineering, 21, 53–77.
  • Iten, M., and Liu, S. (2014), A work procedure of utilizing pcms as thermal storage systems based on air-tes systems. Energy Conversion and Management,77, 608–627.
  • Ji, C., Qina, Z., Low Z., Dubeya S., Chooa, F. H., and Duanb F. (2018). Non-uniform heat transfer suppression to enhance PCM melting by angled fins. Applied Thermal Engineering, 129, 269-279.
  • Khadiran, T., Hussein, M. Z., Zainal, Z., and Rusli, R. (2016). Advanced energy storage materials for building applications and their thermal performance characterization. Renewable and Sustainable Energy Reviews, 57, 916–928.
  • Koşan, M., ve Aktaş M. (2018). Faz değiştiren malzemelerle termal enerji depolayan bir ısı değiştiricisinin sayısal analizi. Politeknik, 21(2), 403-409.
  • Li, J., Abdulghani Z.R., Alghamdi M.N., Sharma K., Niyas H., Moria H., Arsalanloo A. (2023) Effect of twisted fins on the melting performance of PCM in a latent heat thermal energy storage system in vertical and horizontal orientations: Energy and exergy analysis, Applied Thermal Engineering, 219, Part A, 119489.
  • Mazman, M., " Gizli ısı depolaması ve uygulamaları", Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana. 2006.
  • Medrano, M., Yilmaz M.O., Nogués M. Martorell I., Roca J., Cabeza L.F. (2009). Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Applied Energy, 86 (10), 2047–2055.
  • Mettawee EB.S., and Assassa G.M.R. (2007). Thermal conductivity enhancement in a latent heat storage system. Solar Energy, 81(7), 839–845.
  • Mohamed, S. A., Al-Sulaiman, F. A., Ibrahim, N. I., Zahir, M. H., Al-Ahmed, A., Saidur, R., Yılbaş, B.S., and Sahin, A.Z (2017). A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renewable and Sustainable Energy Reviews, 70, 1072-1089.
  • Pahamli, Y., Hosseini M.J., Ranjbar A.A., and Bahrampoury R. (2016). Analysis of the effect of eccentricity and operational parameters in pcm-filled single-pass shell and tube heat exchangers. Renewable Energy, 97, 344–357.
  • Pillai, K.K. and Brinkworth, B.J. (1976). The storage of low-grade thermal energy using phase change materials. Applied Energy, 2, 205–16.
  • Rahimi, M., Ranjbar, A. A., Ganji, D. D., Sedighi, K., Hosseini, M. J. and Bahrampoury, R. (2014). Analysis of geometrical and operational parameters of PCM in a fin and tube heat exchanger. International Communications in Heat and Mass Transfer, 53, 109–115.
  • Ravikumar M. and Srinivasan P. (2008). Phase change material as thermal energy storage material for cooling of buildings. Journal of Theoretical and Applied Information Technology, 4, 503–11.
  • Sharma, R., Ganesan, P., Tyagi, V., Metselaar, H. and Sandaran, S. (2015). Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Conversion and Management, 95, 193-228.
  • Sharma, S.D., Kıtano H. and Sagara K. (2004). Phase change materials for low temperature solar thermal applications. Res. Rep. Fac. Eng. Mie Univ., 29, 31-64.
  • Stritih, U. (2004). An experimental study of enhanced heat transfer in rectangular PCM thermal storage. International Journal of Heat and Mass Transfer, 47, 2841–2847.
  • Velraj R., Seeniraj R., Hafner B., Faber C., Schwarzer K. (1999). Heat transfer enhancement in a latent heat storage system. Solar Energy, 65,171–80.
  • Verma, P., Varun G., and Singal, S.K. (2008). Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renewable and Sustainable Energy Reviews, 12(4), 999-1031.
  • Vyshak, N. R., and Jilani, G. (2007). Numerical analysis of latent heat thermal energy storage system. Energy Conversion and Management, 48 (7), 2161–2168.
  • URL-1: https://en.zae-bayern.de/ (Erişim Tarihi: 1 Mart 2023).

CaCl2.6H2O ve Na2SO4.10H2O Faz Değişim Malzemelerinin Kullanıldığı Gizli Termal Enerji Depolama Ünitesinde Farklı Tip Bir Kanat Kullanmanın FDM’nin Erime Süresine Etkisinin HAD Analiziyle Araştırılması

Year 2023, , 701 - 723, 15.06.2023
https://doi.org/10.31466/kfbd.1277463

Abstract

Bu çalışmada, CaCl2.6H2O (Kalsiyum klorür hekzahidrat) ve Na2SO4.10H2O (Sodyum klorür dekahidrat) inorganik faz değişim malzemelerinin (FDM) gizli ısı depolama özelliklerinden faydalanılarak termal enerji depolamak için çift borulu eşmerkezli bir ısı değiştiricisi tasarlanmıştır. Hesaplamalı Akışkanlar Dinamiği (HAD) analizleri, işletme atık ısı değerlerine uygun olarak seçilen 50 0C, 60 0C ve 70 0C ITA (ısı transfer akışkanı) su sıcaklıkları için ANSYS Fluent ticari programı yardımıyla yapılmıştır. İki boyutlu ve zamana bağlı olarak gerçekleştirilen analizlerle öncelikle kanatçıksız durumdaki, daha sonra ısı transferini arttırmak amacıyla FDM içerisine literatürden farklı bir tip kanat yerleştirilmesi durumundaki FDM erime süresi analizleri tamamlanmıştır. Kanat etkenlikleri sırasıyla 2,2, 3,3, 4,4, 5,5 olarak literatürden farklı bir şekilde ANSYS analiziyle tespit edilen 6,9,12,15 kanatlı modellerin, kanatsız modele göre optimum atık ısı sıcaklığı olarak belirlenen 60 °C sıcaklıkta erime prosesleri incelenmiştir. Kanatçıksız durumda CaCl2.6H2O’ın 140 dakikada, Na2SO4.10H2O' ün ise 180 dakikada erime gösterdiği görülmüştür. Bu durumun nedeni CaCl2.6H2O’nin ısıl iletim katsayısının daha yüksek olmasıdır. Kanatsız duruma göre kanat sayısının artmasıyla erime sürelerinin, CaCl2.6H2O faz değişim malzemesi için %71,42, %75,71, %79,28 ve %82,14, Na2SO4.10H2 O için ise %73,33, %77,77, %80 ve %81,66 oranında azaldığı belirlenmiştir. Analiz sonuçlarına göre, ITA sıcaklığı ve kanat sayısındaki artışla FDM ’nin erime süresinin azaldığı ve ısı transfer akışkanından faz değişim malzemesine daha hızlı bir şekilde ısı enerjisi aktarıldığı tespit edilmiştir.

References

  • Acir, A. and Canli, M. E. (2018). Investigation of fin application effects on melting time in a latent thermal energy storage system with phase change material (PCM). Applied Thermal Engineering,144.
  • ANSYS, (2008) Inc. Fluent Theory Guide, USA, November 28, Chp:21.1-14.
  • Ao, C., Yan, S., Zhao, L., Wu,Y. (2023). Assessment on the effect of longitudinal fins upon melting process in a latent heat thermal energy storage unit. Journal of Energy Storage, 59.
  • Barba, A., and Spiga, M. (2003). Discharge mode for encapsulated PCMs in storage tanks. Solar Energy, 74(2), 141–148.
  • Bédécarrats, J., Strub, F., Falcon, B., and Dumas, J. (1996). Phase-change thermal energy storage sing spherical capsules: performance of a test plant. International Journal of Refrigeration, 9(3),187–196.
  • Bilen, K., Takgil, F., and Kaygusuz K. (2008). Thermal energy storage behavior of CaCl2.6H2O during melting and solidification. Energy Sources, Part A, 30:775–787.
  • Carlsson, B., and Wettermark, G. (1980). Heat transfer properties of a heat of fusion store based on CaCl2 6H2O. Solar Energy, 24, 239–47.
  • Castell, A., Solé, C., Medrano, M., Roca, J., Cabeza, L. F., and García, D. (2008). Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Applied Thermal Engineering, 28 (13), 1676–1686.
  • Çengel, Y. A. and Cimbala, J. M. (2006). Akışkanlar mekaniği temelleri ve uygulamaları. İzmir: Güven Bilimsel Yayınevi. 818-830.
  • Çengel, Y. A., (2015) Heat and mass transfer: Principles and applications. Ankara: Palme Pub.
  • Çengel, Y. A., (2015) Thermodynamics: with an engineering approach. Ankara: Palme Pub.
  • El Qarnia, H., A. Draoui, A., and Lakhal, E.K. (2013). "Computation of melting with natural convection inside a rectangular enclosure heated by discrete protruding heat sources. Applied Mathematical Modeling, 37 (6), 3968-3981.
  • Esen, M., Durmuş, A., and Durmuş, A. (1998). Geometric design of solar-aided latent heat store depending on various parameters and phase change materials. Solar Energy, 62(1), 19–28.
  • Hasnain, S. M. (1998). Review on sustainable thermal energy storage Technologies., Part 1: heat storage materials and techniques. Energy Conversion and Management, 39 (11), 1127–38.
  • Ismail, K.A.R., Alves, C.L.F., Modesto, M. (2001). Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Applied Thermal Engineering, 21, 53–77.
  • Iten, M., and Liu, S. (2014), A work procedure of utilizing pcms as thermal storage systems based on air-tes systems. Energy Conversion and Management,77, 608–627.
  • Ji, C., Qina, Z., Low Z., Dubeya S., Chooa, F. H., and Duanb F. (2018). Non-uniform heat transfer suppression to enhance PCM melting by angled fins. Applied Thermal Engineering, 129, 269-279.
  • Khadiran, T., Hussein, M. Z., Zainal, Z., and Rusli, R. (2016). Advanced energy storage materials for building applications and their thermal performance characterization. Renewable and Sustainable Energy Reviews, 57, 916–928.
  • Koşan, M., ve Aktaş M. (2018). Faz değiştiren malzemelerle termal enerji depolayan bir ısı değiştiricisinin sayısal analizi. Politeknik, 21(2), 403-409.
  • Li, J., Abdulghani Z.R., Alghamdi M.N., Sharma K., Niyas H., Moria H., Arsalanloo A. (2023) Effect of twisted fins on the melting performance of PCM in a latent heat thermal energy storage system in vertical and horizontal orientations: Energy and exergy analysis, Applied Thermal Engineering, 219, Part A, 119489.
  • Mazman, M., " Gizli ısı depolaması ve uygulamaları", Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana. 2006.
  • Medrano, M., Yilmaz M.O., Nogués M. Martorell I., Roca J., Cabeza L.F. (2009). Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Applied Energy, 86 (10), 2047–2055.
  • Mettawee EB.S., and Assassa G.M.R. (2007). Thermal conductivity enhancement in a latent heat storage system. Solar Energy, 81(7), 839–845.
  • Mohamed, S. A., Al-Sulaiman, F. A., Ibrahim, N. I., Zahir, M. H., Al-Ahmed, A., Saidur, R., Yılbaş, B.S., and Sahin, A.Z (2017). A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renewable and Sustainable Energy Reviews, 70, 1072-1089.
  • Pahamli, Y., Hosseini M.J., Ranjbar A.A., and Bahrampoury R. (2016). Analysis of the effect of eccentricity and operational parameters in pcm-filled single-pass shell and tube heat exchangers. Renewable Energy, 97, 344–357.
  • Pillai, K.K. and Brinkworth, B.J. (1976). The storage of low-grade thermal energy using phase change materials. Applied Energy, 2, 205–16.
  • Rahimi, M., Ranjbar, A. A., Ganji, D. D., Sedighi, K., Hosseini, M. J. and Bahrampoury, R. (2014). Analysis of geometrical and operational parameters of PCM in a fin and tube heat exchanger. International Communications in Heat and Mass Transfer, 53, 109–115.
  • Ravikumar M. and Srinivasan P. (2008). Phase change material as thermal energy storage material for cooling of buildings. Journal of Theoretical and Applied Information Technology, 4, 503–11.
  • Sharma, R., Ganesan, P., Tyagi, V., Metselaar, H. and Sandaran, S. (2015). Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Conversion and Management, 95, 193-228.
  • Sharma, S.D., Kıtano H. and Sagara K. (2004). Phase change materials for low temperature solar thermal applications. Res. Rep. Fac. Eng. Mie Univ., 29, 31-64.
  • Stritih, U. (2004). An experimental study of enhanced heat transfer in rectangular PCM thermal storage. International Journal of Heat and Mass Transfer, 47, 2841–2847.
  • Velraj R., Seeniraj R., Hafner B., Faber C., Schwarzer K. (1999). Heat transfer enhancement in a latent heat storage system. Solar Energy, 65,171–80.
  • Verma, P., Varun G., and Singal, S.K. (2008). Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renewable and Sustainable Energy Reviews, 12(4), 999-1031.
  • Vyshak, N. R., and Jilani, G. (2007). Numerical analysis of latent heat thermal energy storage system. Energy Conversion and Management, 48 (7), 2161–2168.
  • URL-1: https://en.zae-bayern.de/ (Erişim Tarihi: 1 Mart 2023).
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Articles
Authors

Fadime Şimşek 0000-0002-1440-7480

Sefa Organ 0000-0002-5926-6212

Early Pub Date June 15, 2023
Publication Date June 15, 2023
Published in Issue Year 2023

Cite

APA Şimşek, F., & Organ, S. (2023). CaCl2.6H2O ve Na2SO4.10H2O Faz Değişim Malzemelerinin Kullanıldığı Gizli Termal Enerji Depolama Ünitesinde Farklı Tip Bir Kanat Kullanmanın FDM’nin Erime Süresine Etkisinin HAD Analiziyle Araştırılması. Karadeniz Fen Bilimleri Dergisi, 13(2), 701-723. https://doi.org/10.31466/kfbd.1277463