Research Article
BibTex RIS Cite

The Effects of Different Malathion Concentrations on Algal Growth in Cultural Conditions

Year 2023, , 1510 - 1522, 15.12.2023
https://doi.org/10.31466/kfbd.1305969

Abstract

Malathion is one of the insecticides commonly used to control hazelnut pests in hazelnut orchards in Giresun region. This insecticide pollutes lakes, rivers and sea waters by drifting from the soil with rain, flood and snow waters. In this study, Scenedesmus sp. cultures were prepared in BG-11 medium for use in laboratory experiments. It was aimed to determine the change in algal growth due to the increase in malathion concentration applied to these cultures. Growth of strains in cultures treated with malathion at doses of 0.05 mg/L, 0.5 mg/L, 1 mg/L, 5 mg/L and 10 mg/L were compared with those grown in non-malathion cultures. In addition, pH was measured and chlorophyll-a values were also calculated for the control group and the cultures to which malathion was added during the study. Cell number showed different changes over time according to pesticide concentrations. The highest number of cells was 3.61x106 cells/ml at 10 mg/L dose at the end of 24th hour and the lowest number of cells was 2.05x106 cells/ml at 10 mg/L dose at the end of 48th hour. pH values did not fluctuate much and generally decreased at the end of 96th hour. The lowest chlorophyll-a was calculated as 0.35 µg/L at 96th hour. As a result, it was determined that the doses studied negatively affected algal growth, although not too much.

Project Number

FEN-BAP-A-230218-19

References

  • Ağırman, N. and Çetin, A. K. (2012). Investigation of the effects of some pesticides on the development of Chlorella vulgaris. 21st National Biology Congress, (ss. 924). Ege University, İzmir, Turkey.
  • Altıkat, A., Turan, T., Torun, F. E., Bingül, Z. (2009). Pesticide use in Turkey and its effects on the environment. Journal of Atatürk University Faculty of Agriculture, 40(2), 87-92.
  • Cessna, A. J. (2009). Pesticides in the environment: Real or Imagined, Agriculture and Agri-food Canada, Research Centre, Lethbridge, AB.
  • Chen, Y., Wen, X., Wang, B., Nie, P. 2017. “Agricultural pollution and regulation: How to subsidize agriculture?”. Journal of cleaner production, 164, 258-264.
  • Cid, Á., Prado, R., Rioboo, C., Suarez-Bregua, P., Herrero, C. (2012). Use of Microalgae as Biological Indicators of Pollution: Looking for New Relevant Cytotoxicity Endpoints. In: Microalgae: Biotechnology, Microbiology and Energy. Ed.: Johnsen, M. N, Nova Science Publishers, New York, pp: 311-323.
  • Couderchet, M., Vernet, G. (2003). Pigments as biomarkers of exposure to the vineyard herbicide flazasulfuron in freshwater algae. Ecotoxicology and Environmental Safety, 55(3): 271-277. doi.org/10.1016/S0147-6513(02)00064-7
  • Dash, D. M. and Osborne, W. J. (2023). A systematic review on the implementation of advanced and evolutionary biotechnological tools for efficient bioremediation of organophosphorus pesticides, Chemosphere. 313, 137506.
  • Deknock, A., Troyer, N. D., Houbraken, M., Dominguez-Granda, L., Nolivos, I., Echelpoel, W. V., Forio, M. A. E., Spanoghe, P., Goethals, P. (2019). Distribution of agricultural pesticides in the freshwater environment of the Guayas river basin (Ecuador). Science of the Total Environment, 646, 996-1008. doi.org/10.1016/j.scitotenv.2018.07.185
  • Demirbaş, A. R. (2010). Fındık Tarımı. T.C. Samsun Valiliği İl Tarım Müdürlüğü. Samsun.
  • Doğan, F. N. and Karpuzcu, M. E. (2019). Türkiye’de tarım kaynaklı pestisit kirliliğinin durumu ve alternatif kontrol tedbirlerinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(6), 734-747.
  • Eullaffroy, P. and Vernet, G. (2003). The F684/F735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phytotoxicity in algae. Water Res. 37, 1983–1990.
  • Francois, D. L. and Robinson, G. G. C. (1990). Indices of triazine toxicity in Chlamydomonas geitleri Ettl. Aquatic Toxicology, 16(3), 205-227.
  • Geitler, L. (1925). Cyanophyceae. Die Susswasser Flora Deutschland. Osterreichs und der Schweiz, 1-450.
  • Ghadai, A. K., Kumar, S., Acharya, D. K. (2010). Bio-Molecular assay of Cyanobacteria on response to diazinon an Organophosphrus insecticide. International Journal of Chemical Research, vol. 2, no 1, pp. 20-24.
  • Gour, R. S., Kant, A., Chauhan, R. S. (2014). Screening of micro algae for Growth and lipid accumulation properties. J Algal Biomass Util, 5, 38-46.
  • Guanzon, N. G., Fukuda, M., Nakahara, H. (1996). Accumulation of agricultural pesticides by three freshwater microalgae. Fisheries Science, 62(5): 690-697. doi.org/10.2331/fishsci.62.690
  • Hong, Y., Hu, H. Y., Li, F. M. (2008). Growth and physiological responses of freshwater green alga Selenastrum capricornutum to allelochemical ethyl 2-methyl acetoacetate (EMA) under different initial algal densities. Pesticide Biochemistry and Physiology, 90: 203-212. doi.org/10.1016/j.pestbp.2007.11.009
  • Huber–Pestalozzi, G. (1969). Das phytoplankton des süsswassers systematik und biologie, 4.Teil, Euglenophycean. Stuttgart, Germany.: E. Schweizerbarth’sche Verlagsbuchhandlung.
  • Huber–Pestalozzi, G. (1982). Das phytoplankton des süsswassers systematik und biologie, 8.Teil, 1. Halffe Conjugatophyceae Zygnematalesund Desmidiales (excl. Zygnemataceae). Stuttgart, Germany: E. Schweizerbarth’sche Verlagsbuchhandlung.
  • Hustedt, F. (1985). The Pennet Diatoms. Koenigstein, Gremany, Koeltz Scientific Books, 905 pp.
  • Ibrahim, W. M, Karam, M. A., El-Shahat, R., Adway, A. A. (2014). Biodegradation and utilization of Organophosphorus pesticide Malathion by Cyanobacteria. Biomed Research International, Vol 2014. doi.org/10.1155/2014/392682
  • Ibrahim, W. M., Essa, A. M. (2010). Tolerance, biodegradation and utilization of malathion, an organophosphorous pesticide, by some cyanobacterial isolates. Egypt J Bot, 27, 225-240.
  • ISO-8692: (1989). Water quality- Freshwater algal growth inhibition test with Scenedesmus subspicatus and Selenastrum capricornutum. 95-99. (2004-09-22) www.İso.org.
  • John, D. M., Whitton, B. A. and Brook, A. J. (2003). The freshwater algal flora of the British isles: An identification guide to freshwater and terrestrial algae. The Natural History Museum and The British Phycological Society. Cambridge, UK: Cambridge University Press.
  • Josse, R., Sharanek, A., Savary, C. C., Guillouzo, A. (2014). Impact of isomalathion on malathion cytotoxiticity and genotoxicity in human HepaRG cells. Chemico-Biological Interactions, vol. 209.pp. 68-76. doi.org/10.1016/j.cbi.2013.12.002
  • Karahan, A., Kutlu, M. A., Gül, A., Karaca, İ. (2018). The Effect of Pesticides on Honey Bees. 6th International Muğla Beekeeping and Pine Honey Congress; Muğla Turkiye.
  • Kelly, P. M. (2000). ‘Towards a Sustainable Response to Climate Change’, in Huxham, M. and Sumner, D. (eds.), Science and Environmental Decision-Making, Pearson Education, Harlow, pp. 118–141.
  • Koçyiğit, H., Sinanoğlu, F. (2019). Yüzeysel sularda pestisit kalıntısının araştırılması çalışma örneği; Alanya Alara Çayı. Doğ Afet Çev Derg., 5(2): 224-236, DOI: 10.21324/dacd.488278
  • Komárek, J. and Anagnostidis, K. (2008). Cyanoprokaryota, 2. Teil/Part 2: Oscillatoriales, Süswasser Flora von Mitteleuropa (Freshwater Flora of Central Europe). Jena, Germany: GustavFischerVerlag.
  • Kumar, S. S., Ghosh, P., Malyan, S. K., Sharma, J., Kumar, V. (2019). A comprehensive review on enzymatic degradation of the organophosphate pesticide malathion in the environment. Journal of Environmental Science and Health, Part C, 37(4), 288-329.
  • Lal, R. and Lal, S. (1988). Pesticides and Nitrogen Cycle, Vol 3. CRC, Boca Raton, FL, USA.
  • LeGresley, M., McDermott, G. (2010). Counting chamber methods for quantitative phytoplankton analysis-haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. UNESCO (IOC manuals and guides), 25-30.
  • Lockert, C. K., Hoagland, K. D., Siegfried, B. D. (2006). Comporative sensitivity of Freshwater Algae to Atrazine. Bull. Environ. Contam. Toxicol. 76:73-79. doi.org/10.1007/s00128-005-0891-9
  • Mayer, P., and Jensen, J. F. (1995). Factors affecting results of algal toxicity tests. Institute for environmental science and technology, Technical University of Denmark, Lyngby.
  • Mesnage, R., Defarge, N., Vendomois, J. S., Seralini, G. E. (2014). Major pesticides are more toxic to human cells than their declared active principles. BioMed research international, vol. 2014, 8 p. doi.org/10.1155/2014/179691
  • Nusch, E. (1980). Comparison of different methods for Chlorophyll-a and phaeropigments determination. Archiv für Hydrobologie, 4: 14-36.
  • Öztürk, B., Fakıoğlu, Ö. (2023). Investigation of the Effect of Chlorpyrifos-Ethyl and Pendimethalin on Desmodesmus communis (E. Hegewald) E. Hegewald. The Trout Journal of Atatürk University, 1(1), 32-37.
  • Öterler, B., Albay, M. (2016). The effect of 5 organophosphate pesticides on the growth of Chlorella vulgaris Beyerinck [Beijerinck] 1890. Int. J. Res. Stud. Biosci, 4, 26-33.
  • Polat, B. and Çetin, H. (2020). Pestisit kullanımının bal arısı sağlığına ve ürünlerine etkisi.
  • Relyea, R. A., Diecks, N. (2008). An unforeseen chain of events: lethal effects of pesticides on frogs at sublethal concentrations. Ecological Applications, 18(7), 1728-1742. doi.org/10.1890/08-0454.1
  • Sabater, C., Carrarsco, J. M. (2001). Effects of pyridaphenthion on growth of five freshwater species of phytoplankton. A laboratory study. Chemosphere, 44 (8): 1775-1781. doi.org/10.1016/S0045-6535(00)00575-0
  • Solmaz, S. K., Azak, H., Üstün, G. E., Morsünbül, T. (2010). Pestisit gideriminde fenton proseslerinin kullanımına yönelik bir envanter çalışması. Uludağ University Journal of The Faculty of Engineering, 15(1):179-194.
  • Storck, V, Karpouzas, D. G, Martin-Laurent, F. (2017). “Towards a better pesticide policy for the European Union”. Science of Total Environment, 575, 1027-1033.
  • Sukatar, A. (2002). Alg Kültür Yöntemleri. Ege Üni. Fen Fak. Kitapları Serisi No:184, syf: 101-104.
  • Tadros, M. G., Philips, J., Patel, H., Pandiripally, V. (1994). “Differential response of green algal species to solvents”, Bulletin of Environmental Contamination and Toxicology; (United States), 52: 332-337. doi.org/10.1007/bf00197817
  • Tankiewicz, M., Fenik, J., Biziuk, M. (2010). Determination of organophosphorus and organonitrogen pesticides in water samples. TrAC Trend Anal Chem. 29(9): 1050- 1063. doi: 10.1016/j.trac.2010.05.008
  • Taxvig, C., Hadrup, N., Boberg, J., Axelstad, M., Bossi, R., Bonefeld-Jørgensen, E. C., Vinggaard, A. M. (2013). In vitro-in vivo correlations for endocrine activity of a mixture of currently used pesticides. Toxicology and applied pharmacology, 272(3), 757-766. doi.org/10.1016/j.taap.2013.07.028
  • Tunca, H., Hödük, K., Köçkar, F., Doğru, A., Sevindik, T. O. (2021). Effects of two synthetic pyrethroids on Arthrospira platensis Gomont growth and antioxidant parameters. Acta Botanica Croatica, 80(2), 117-124. doi.org/10.37427/botcro-2021-011
  • Utermöhl, H. (1958). Zur Vervollkommung der quantitativen phytoplankton methodik. Mitt Int Ver. Limnol. 9: 38.
  • Uzundumlu, A. S., Kılıç, B., Tozlu, G. (2017). Fındık üretiminde kimyasal ilaç kullanımını etkileyen faktörlerin analizi: Giresun İli Örneği. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 7(1), 1-9.
  • Yeh, H. J., Chen, C. Y. (2006). Toxicity assessment of pesticides to P. subcapitata under air-tight test environment. Journal of Hazardous Materials, 131, 6-12. doi.org/10.1016/j.jhazmat.2005.09.009
  • Yılmaz, Ö., Taş, B. (2021). Feasibility and assessment of the phytoremediation potential of green microalga and duckweed for zeta-cypermethrin removal. Desalination and Water Treatment, 209, 131-143.
  • Zhang, S., Qiu, C. B., Zhou, Y. Jin, Z. P., Yang, H. (2011). Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green algae Chlamydomonas reinhardtii. Ecotoxicology, 20: 337–347. doi.org/10.1007/s10646-010-0583-z

Farklı Malathion Konsantrasyonlarının Kültürel Koşullarda Alg Büyümesi Üzerine Etkileri

Year 2023, , 1510 - 1522, 15.12.2023
https://doi.org/10.31466/kfbd.1305969

Abstract

Malathion, Giresun yöresindeki fındık bahçelerinde fındık zararlılarını yok etmek için yaygın olarak kullanılan insektisitlerden biridir. Bu insektisit yağmur, sel ve kar suları ile topraktan sürüklenerek göl, nehir ve deniz sularını kirletmektedir. Bu çalışmada, laboratuar deneylerinde kullanılmak üzere BG-11 besiyerinde Scenedesmus sp. kültürleri hazırlanmıştır. Bu kültürlere uygulanan malathion konsantrasyonundaki artışa bağlı olarak alg gelişimindeki değişimin belirlenmesi amaçlanmıştır. 0.05 mg/L, 0.5 mg/L, 1 mg/L, 5 mg/L ve 10 mg/L dozlarında malathion uygulanan kültürlerdeki suşların büyümesi, malathion olmayan kültürde yetiştirilenlerle karşılaştırılmıştır. Ek olarak kontrol grubu ve çalışma sırasında malathion eklenmiş kültürlerin çalışma süresince pH ölçümleri yapılmış ve klorofil-a değerleri de ayrıca hesaplanmıştır. Hücre sayısı pestisit konsantrasyonlarına göre zamanla farklı değişimler göstermiştir. En fazla hücre 24. saat sonunda 10 mg/L dozunda 3,61x106 hücre/ml; en az hücre ise 48. saat sonunda yine 10 mg/L dozunda 2,05x106 hücre/ml olarak ölçülmüştür. pH değerlerinin çok fazla dalgalanma göstermediği, 96. saat sonunda genel olarak düştüğü belirlendi. En düşük klorofil-a ise 96. saatte 0,35 µg/L olarak hesaplanmıştır. Sonuç olarak çalışılan dozların alg gelişimini çok fazla olmasa da olumsuz etkilediği belirlenmiştir.

Supporting Institution

Giresun Üniversitesi Bilimsel Araştırma Projeleri (BAP)

Project Number

FEN-BAP-A-230218-19

Thanks

Giresun Üniversitesi Bilimsel Araştırma Projeleri (BAP) birimine bu araştırmaya katkılarından dolayı teşekkür ederiz (Proje No: FEN-BAP-A-230218-19).

References

  • Ağırman, N. and Çetin, A. K. (2012). Investigation of the effects of some pesticides on the development of Chlorella vulgaris. 21st National Biology Congress, (ss. 924). Ege University, İzmir, Turkey.
  • Altıkat, A., Turan, T., Torun, F. E., Bingül, Z. (2009). Pesticide use in Turkey and its effects on the environment. Journal of Atatürk University Faculty of Agriculture, 40(2), 87-92.
  • Cessna, A. J. (2009). Pesticides in the environment: Real or Imagined, Agriculture and Agri-food Canada, Research Centre, Lethbridge, AB.
  • Chen, Y., Wen, X., Wang, B., Nie, P. 2017. “Agricultural pollution and regulation: How to subsidize agriculture?”. Journal of cleaner production, 164, 258-264.
  • Cid, Á., Prado, R., Rioboo, C., Suarez-Bregua, P., Herrero, C. (2012). Use of Microalgae as Biological Indicators of Pollution: Looking for New Relevant Cytotoxicity Endpoints. In: Microalgae: Biotechnology, Microbiology and Energy. Ed.: Johnsen, M. N, Nova Science Publishers, New York, pp: 311-323.
  • Couderchet, M., Vernet, G. (2003). Pigments as biomarkers of exposure to the vineyard herbicide flazasulfuron in freshwater algae. Ecotoxicology and Environmental Safety, 55(3): 271-277. doi.org/10.1016/S0147-6513(02)00064-7
  • Dash, D. M. and Osborne, W. J. (2023). A systematic review on the implementation of advanced and evolutionary biotechnological tools for efficient bioremediation of organophosphorus pesticides, Chemosphere. 313, 137506.
  • Deknock, A., Troyer, N. D., Houbraken, M., Dominguez-Granda, L., Nolivos, I., Echelpoel, W. V., Forio, M. A. E., Spanoghe, P., Goethals, P. (2019). Distribution of agricultural pesticides in the freshwater environment of the Guayas river basin (Ecuador). Science of the Total Environment, 646, 996-1008. doi.org/10.1016/j.scitotenv.2018.07.185
  • Demirbaş, A. R. (2010). Fındık Tarımı. T.C. Samsun Valiliği İl Tarım Müdürlüğü. Samsun.
  • Doğan, F. N. and Karpuzcu, M. E. (2019). Türkiye’de tarım kaynaklı pestisit kirliliğinin durumu ve alternatif kontrol tedbirlerinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(6), 734-747.
  • Eullaffroy, P. and Vernet, G. (2003). The F684/F735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phytotoxicity in algae. Water Res. 37, 1983–1990.
  • Francois, D. L. and Robinson, G. G. C. (1990). Indices of triazine toxicity in Chlamydomonas geitleri Ettl. Aquatic Toxicology, 16(3), 205-227.
  • Geitler, L. (1925). Cyanophyceae. Die Susswasser Flora Deutschland. Osterreichs und der Schweiz, 1-450.
  • Ghadai, A. K., Kumar, S., Acharya, D. K. (2010). Bio-Molecular assay of Cyanobacteria on response to diazinon an Organophosphrus insecticide. International Journal of Chemical Research, vol. 2, no 1, pp. 20-24.
  • Gour, R. S., Kant, A., Chauhan, R. S. (2014). Screening of micro algae for Growth and lipid accumulation properties. J Algal Biomass Util, 5, 38-46.
  • Guanzon, N. G., Fukuda, M., Nakahara, H. (1996). Accumulation of agricultural pesticides by three freshwater microalgae. Fisheries Science, 62(5): 690-697. doi.org/10.2331/fishsci.62.690
  • Hong, Y., Hu, H. Y., Li, F. M. (2008). Growth and physiological responses of freshwater green alga Selenastrum capricornutum to allelochemical ethyl 2-methyl acetoacetate (EMA) under different initial algal densities. Pesticide Biochemistry and Physiology, 90: 203-212. doi.org/10.1016/j.pestbp.2007.11.009
  • Huber–Pestalozzi, G. (1969). Das phytoplankton des süsswassers systematik und biologie, 4.Teil, Euglenophycean. Stuttgart, Germany.: E. Schweizerbarth’sche Verlagsbuchhandlung.
  • Huber–Pestalozzi, G. (1982). Das phytoplankton des süsswassers systematik und biologie, 8.Teil, 1. Halffe Conjugatophyceae Zygnematalesund Desmidiales (excl. Zygnemataceae). Stuttgart, Germany: E. Schweizerbarth’sche Verlagsbuchhandlung.
  • Hustedt, F. (1985). The Pennet Diatoms. Koenigstein, Gremany, Koeltz Scientific Books, 905 pp.
  • Ibrahim, W. M, Karam, M. A., El-Shahat, R., Adway, A. A. (2014). Biodegradation and utilization of Organophosphorus pesticide Malathion by Cyanobacteria. Biomed Research International, Vol 2014. doi.org/10.1155/2014/392682
  • Ibrahim, W. M., Essa, A. M. (2010). Tolerance, biodegradation and utilization of malathion, an organophosphorous pesticide, by some cyanobacterial isolates. Egypt J Bot, 27, 225-240.
  • ISO-8692: (1989). Water quality- Freshwater algal growth inhibition test with Scenedesmus subspicatus and Selenastrum capricornutum. 95-99. (2004-09-22) www.İso.org.
  • John, D. M., Whitton, B. A. and Brook, A. J. (2003). The freshwater algal flora of the British isles: An identification guide to freshwater and terrestrial algae. The Natural History Museum and The British Phycological Society. Cambridge, UK: Cambridge University Press.
  • Josse, R., Sharanek, A., Savary, C. C., Guillouzo, A. (2014). Impact of isomalathion on malathion cytotoxiticity and genotoxicity in human HepaRG cells. Chemico-Biological Interactions, vol. 209.pp. 68-76. doi.org/10.1016/j.cbi.2013.12.002
  • Karahan, A., Kutlu, M. A., Gül, A., Karaca, İ. (2018). The Effect of Pesticides on Honey Bees. 6th International Muğla Beekeeping and Pine Honey Congress; Muğla Turkiye.
  • Kelly, P. M. (2000). ‘Towards a Sustainable Response to Climate Change’, in Huxham, M. and Sumner, D. (eds.), Science and Environmental Decision-Making, Pearson Education, Harlow, pp. 118–141.
  • Koçyiğit, H., Sinanoğlu, F. (2019). Yüzeysel sularda pestisit kalıntısının araştırılması çalışma örneği; Alanya Alara Çayı. Doğ Afet Çev Derg., 5(2): 224-236, DOI: 10.21324/dacd.488278
  • Komárek, J. and Anagnostidis, K. (2008). Cyanoprokaryota, 2. Teil/Part 2: Oscillatoriales, Süswasser Flora von Mitteleuropa (Freshwater Flora of Central Europe). Jena, Germany: GustavFischerVerlag.
  • Kumar, S. S., Ghosh, P., Malyan, S. K., Sharma, J., Kumar, V. (2019). A comprehensive review on enzymatic degradation of the organophosphate pesticide malathion in the environment. Journal of Environmental Science and Health, Part C, 37(4), 288-329.
  • Lal, R. and Lal, S. (1988). Pesticides and Nitrogen Cycle, Vol 3. CRC, Boca Raton, FL, USA.
  • LeGresley, M., McDermott, G. (2010). Counting chamber methods for quantitative phytoplankton analysis-haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. UNESCO (IOC manuals and guides), 25-30.
  • Lockert, C. K., Hoagland, K. D., Siegfried, B. D. (2006). Comporative sensitivity of Freshwater Algae to Atrazine. Bull. Environ. Contam. Toxicol. 76:73-79. doi.org/10.1007/s00128-005-0891-9
  • Mayer, P., and Jensen, J. F. (1995). Factors affecting results of algal toxicity tests. Institute for environmental science and technology, Technical University of Denmark, Lyngby.
  • Mesnage, R., Defarge, N., Vendomois, J. S., Seralini, G. E. (2014). Major pesticides are more toxic to human cells than their declared active principles. BioMed research international, vol. 2014, 8 p. doi.org/10.1155/2014/179691
  • Nusch, E. (1980). Comparison of different methods for Chlorophyll-a and phaeropigments determination. Archiv für Hydrobologie, 4: 14-36.
  • Öztürk, B., Fakıoğlu, Ö. (2023). Investigation of the Effect of Chlorpyrifos-Ethyl and Pendimethalin on Desmodesmus communis (E. Hegewald) E. Hegewald. The Trout Journal of Atatürk University, 1(1), 32-37.
  • Öterler, B., Albay, M. (2016). The effect of 5 organophosphate pesticides on the growth of Chlorella vulgaris Beyerinck [Beijerinck] 1890. Int. J. Res. Stud. Biosci, 4, 26-33.
  • Polat, B. and Çetin, H. (2020). Pestisit kullanımının bal arısı sağlığına ve ürünlerine etkisi.
  • Relyea, R. A., Diecks, N. (2008). An unforeseen chain of events: lethal effects of pesticides on frogs at sublethal concentrations. Ecological Applications, 18(7), 1728-1742. doi.org/10.1890/08-0454.1
  • Sabater, C., Carrarsco, J. M. (2001). Effects of pyridaphenthion on growth of five freshwater species of phytoplankton. A laboratory study. Chemosphere, 44 (8): 1775-1781. doi.org/10.1016/S0045-6535(00)00575-0
  • Solmaz, S. K., Azak, H., Üstün, G. E., Morsünbül, T. (2010). Pestisit gideriminde fenton proseslerinin kullanımına yönelik bir envanter çalışması. Uludağ University Journal of The Faculty of Engineering, 15(1):179-194.
  • Storck, V, Karpouzas, D. G, Martin-Laurent, F. (2017). “Towards a better pesticide policy for the European Union”. Science of Total Environment, 575, 1027-1033.
  • Sukatar, A. (2002). Alg Kültür Yöntemleri. Ege Üni. Fen Fak. Kitapları Serisi No:184, syf: 101-104.
  • Tadros, M. G., Philips, J., Patel, H., Pandiripally, V. (1994). “Differential response of green algal species to solvents”, Bulletin of Environmental Contamination and Toxicology; (United States), 52: 332-337. doi.org/10.1007/bf00197817
  • Tankiewicz, M., Fenik, J., Biziuk, M. (2010). Determination of organophosphorus and organonitrogen pesticides in water samples. TrAC Trend Anal Chem. 29(9): 1050- 1063. doi: 10.1016/j.trac.2010.05.008
  • Taxvig, C., Hadrup, N., Boberg, J., Axelstad, M., Bossi, R., Bonefeld-Jørgensen, E. C., Vinggaard, A. M. (2013). In vitro-in vivo correlations for endocrine activity of a mixture of currently used pesticides. Toxicology and applied pharmacology, 272(3), 757-766. doi.org/10.1016/j.taap.2013.07.028
  • Tunca, H., Hödük, K., Köçkar, F., Doğru, A., Sevindik, T. O. (2021). Effects of two synthetic pyrethroids on Arthrospira platensis Gomont growth and antioxidant parameters. Acta Botanica Croatica, 80(2), 117-124. doi.org/10.37427/botcro-2021-011
  • Utermöhl, H. (1958). Zur Vervollkommung der quantitativen phytoplankton methodik. Mitt Int Ver. Limnol. 9: 38.
  • Uzundumlu, A. S., Kılıç, B., Tozlu, G. (2017). Fındık üretiminde kimyasal ilaç kullanımını etkileyen faktörlerin analizi: Giresun İli Örneği. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 7(1), 1-9.
  • Yeh, H. J., Chen, C. Y. (2006). Toxicity assessment of pesticides to P. subcapitata under air-tight test environment. Journal of Hazardous Materials, 131, 6-12. doi.org/10.1016/j.jhazmat.2005.09.009
  • Yılmaz, Ö., Taş, B. (2021). Feasibility and assessment of the phytoremediation potential of green microalga and duckweed for zeta-cypermethrin removal. Desalination and Water Treatment, 209, 131-143.
  • Zhang, S., Qiu, C. B., Zhou, Y. Jin, Z. P., Yang, H. (2011). Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green algae Chlamydomonas reinhardtii. Ecotoxicology, 20: 337–347. doi.org/10.1007/s10646-010-0583-z
There are 53 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Elif Soylu 0000-0002-7583-3416

Bengü Temizel 0000-0002-5217-3013

Project Number FEN-BAP-A-230218-19
Early Pub Date December 18, 2023
Publication Date December 15, 2023
Published in Issue Year 2023

Cite

APA Soylu, E., & Temizel, B. (2023). The Effects of Different Malathion Concentrations on Algal Growth in Cultural Conditions. Karadeniz Fen Bilimleri Dergisi, 13(4), 1510-1522. https://doi.org/10.31466/kfbd.1305969