Research Article
BibTex RIS Cite

Parçikan Bitümlü Şeylinin Termal Analiz Kinetiği ve Reaksiyon Mekanizması

Year 2023, , 1648 - 1660, 15.12.2023
https://doi.org/10.31466/kfbd.1329907

Abstract

Bu çalışma, termogravimetrik analiz kullanılarak Arguvan-Parçikan bitümlü şeylindeki organik maddenin yanma kinetiğini araştırmayı amaçlamıştır. Bu amaçla bitümlü şeyle ait kinetik parametreler Arrhenius, Coats-Redfern, Ingraham-Marrier, Horowitz-Metzger olmak üzere 4 farklı kinetik model kullanılarak TGA verilerinden belirlenmiştir. Farklı modeller kullanılarak elde edilen bu kinetik parametreler birbirleriyle karşılaştırmalı olarak sunulmuştur. Elde edilen sonuçlara göre en yüksek aktivasyon enerjisi değerleri 277,27 - 1984,53 kj/mol olarak Arrhenius modeli ile hesaplanmıştır.

References

  • Aksogan Korkmaz, A., ve Ozbas, K. E., (2017). Determination of pyrolysis properties of sirnak (Avgamasya) asphaltite by thermal analysis methods. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(14), 1511–1517.
  • M. T. A Genel Müdürlüğü, (2020). MTA Doğal Kaynaklar ve Ekonomi Bülteni.
  • Aslan, D., ve Sarıışık, A., (2018). Diyarbakır yöresinde bitümlü sıcak karışımlarda kullanılan bazalt, kalker, dere malzemelerinin karakteristik özelliklerinin karşılaştırılması. Harran Üniversitesi Mühendislik Dergisi, 3(3), 243–250.
  • Bhargava, S., Awaja, F., ve Subasinghe, N. D., (2005). Characterisation of some Australian oil shale using thermal, X-ray and IR techniques. Fuel, 84(6), 707–715.
  • Coats, A. W., ve Redfern, J. P., (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68–69.
  • Crapse, J., Pappireddi, N., Gupta, M., Shvartsman, S. Y., Wieschaus, E., ve Wühr, M., (2021). Evaluating the Arrhenius equation for developmental processes. Molecular Systems Biology, 17(8), e9895.
  • Dai, M., Yu, Z., Fang, S., ve Ma, X., (2019). Behaviors, product characteristics and kinetics of catalytic co-pyrolysis spirulina and oil shale. Energy Conversion and Management, 192, 1–10.
  • Gülsaç, I. I. (2021). Thermochemical Conversion Behavior of Turkish Lignite/Poppy Capsule Pulp Blends in N2 and CO2 Atmospheres. Gazi University Journal of Science, 1.
  • Herzog, A. V, Lipman, T. E., ve Kammen, D. M. (2001). Renewable energy sources. Encyclopedia of Life Support Systems (EOLSS). Forerunner Volume-‘Perspectives and Overview of Life Support Systems and Sustainable Development, 76.
  • Horowitz, H. H., ve Metzger, G., (1963). A new analysis of thermogravimetric traces. Analytical Chemistry, 35(10), 1464–1468.
  • Ingraham, T. R., ve Marier, P., (1963). Kinetic studies on the thermal decomposition of calcium carbonate. The Canadian Journal of Chemical Engineering, 41(4), 170–173.
  • Janković, B., Adnađević, B., ve Jovanović, J., (2005). Non-isothermal kinetics of dehydration of equilibrium swollen poly (acrylic acid) hydrogel. Journal of Thermal Analysis and Calorimetry, 82(1), 7–13.
  • Jia, G. (2021). Combustion characteristics and kinetic analysis of biomass pellet fuel using thermogravimetric analysis. Processes, 9(5), 868.
  • Jiang, X. M., Han, X. X., ve Cui, Z. G., (2007). Progress and recent utilization trends in combustion of Chinese oil shale. Progress in Energy and Combustion Science, 33(6), 552–579.
  • Kang, Z., Zhao, Y., ve Yang, D., (2020). Review of oil shale in-situ conversion technology. Applied Energy, 269, 115121.
  • Kök, M., ve Iscan, A., (2007). Oil shale kinetics by differential methods. Journal of Thermal Analysis and Calorimetry, 88(3), 657–661.
  • Korkmaz, A. A., ve Akbulut, Y., (2023). Interpretation of combustion properties of raw-pyrolyzed lignite with kinetic data. International Journal of Coal Preparation and Utilization, 43(7), 1222–1233.
  • Kumar, R., Bansal, V., Badhe, R. M., Madhira, I. S. S., Sugumaran, V., Ahmed, S., Christopher, J., Patel, M. B., ve Basu, B., (2013). Characterization of Indian origin oil shale using advanced analytical techniques. Fuel, 113, 610–616.
  • Laidler, K. J. (1984). The development of the Arrhenius equation. Journal of Chemical Education, 61(6), 494.
  • Laougé, Z. B., ve Merdun, H. (2020). Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis. Bioresource Technology, 299, 122602.
  • Lee, I. C., Lee, M. D., ve Sohn, H. Y., (1985). A DTA study of some oxidation characteristics of Colorado oil shale. Thermochimica Acta, 84, 371–375.
  • Panwar, N. L., Kaushik, S. C., ve Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3), 1513–1524.
  • Sait, H. H., Hussain, A., Salema, A. A., ve Ani, F. N. (2012). Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresource Technology, 118, 382–389.
  • Sanchez, M. E., Otero, M., Gómez, X., ve Morán, A. (2009). Thermogravimetric kinetic analysis of the combustion of biowastes. Renewable Energy, 34(6), 1622–1627.
  • Skala, D., ve Sokic, M., (1992). The determination of a complex kinetic expression of oil shale pyrolysis using combined non-isothermal and isothermal TG. Journal of Thermal Analysis and Calorimetry, 38(4), 729–738.
  • Su, J., ve Yang, J., (1995). Non-isothermal pyrolysis of two kinds of Chinese oil shale. Fuel Science & Technology International, 13(8), 945–956.
  • Sun, Y., Bai, F., Lü, X., Jia, C., Wang, Q., Guo, M., Li, Q., ve Guo, W., (2015). Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model. Energy, 82, 705–713.
  • Syed, S., Qudaih, R., Talab, I., ve Janajreh, I., (2011). Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data. Fuel, 90(4), 1631–1637.
  • Taheri-Shakib, J., ve Kantzas, A., (2021). A comprehensive review of microwave application on the oil shale: Prospects for shale oil production. Fuel, 305, 121519.
  • Thakur, D. S., ve Nuttall Jr, H. E., (1987). Kinetics of pyrolysis of Moroccan oil shale by thermogravimetry. Industrial & Engineering Chemistry Research, 26(7), 1351–1356.
  • Tiwari, P., ve Deo, M., (2012). Compositional and kinetic analysis of oil shale pyrolysis using TGA–MS. Fuel, 94, 333–341.
  • Torrente, M. C., ve Galan, M. A., (2001). Kinetics of the thermal decomposition of oil shale from Puertollano (Spain). Fuel, 80(3), 327–334.
  • Wang, S., Jiang, X., Han, X., ve Tong, J., (2012). Investigation of Chinese oil shale resources comprehensive utilization performance. Energy, 42(1), 224–232.
  • Yılmaz, G., ve Öztürkmen, B. S., (2018). GAP Bölgesi’nde Yenilenebilir Enerji Kaynakları ve Çevresel Etkileri. Harran Üniversitesi Mühendislik Dergisi, 3(3), 52–58.
  • Yorulmaz, S. Y., ve Atimtay, A. T. (2009). Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Processing Technology, 90(7–8), 939–946.
  • Zhang, J., Ding, Y., Du, W., Lu, K., ve Sun, L., (2021). Study on pyrolysis kinetics and reaction mechanism of Beizao oil shale. Fuel, 296, 120696.

Thermal Analysis Kinetics and Reaction Mechanism of Parçikan Bituminous Shale

Year 2023, , 1648 - 1660, 15.12.2023
https://doi.org/10.31466/kfbd.1329907

Abstract

This study aimed to investigate the combustion kinetics of organic material in the thermogravimetric analysis Arguvan-Parçikan bituminous shale. Arrhenius, Coats-Redfern, Ingraham-Marrier, Horowitz-Metzger are 4 different kinetic models from TGA data. These kinetic parameters obtained using different models are presented in comparison with each other. The highest activation values were calculated with the Arrhenius model as 277.27 - 1984.53 kj/mol.

References

  • Aksogan Korkmaz, A., ve Ozbas, K. E., (2017). Determination of pyrolysis properties of sirnak (Avgamasya) asphaltite by thermal analysis methods. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(14), 1511–1517.
  • M. T. A Genel Müdürlüğü, (2020). MTA Doğal Kaynaklar ve Ekonomi Bülteni.
  • Aslan, D., ve Sarıışık, A., (2018). Diyarbakır yöresinde bitümlü sıcak karışımlarda kullanılan bazalt, kalker, dere malzemelerinin karakteristik özelliklerinin karşılaştırılması. Harran Üniversitesi Mühendislik Dergisi, 3(3), 243–250.
  • Bhargava, S., Awaja, F., ve Subasinghe, N. D., (2005). Characterisation of some Australian oil shale using thermal, X-ray and IR techniques. Fuel, 84(6), 707–715.
  • Coats, A. W., ve Redfern, J. P., (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68–69.
  • Crapse, J., Pappireddi, N., Gupta, M., Shvartsman, S. Y., Wieschaus, E., ve Wühr, M., (2021). Evaluating the Arrhenius equation for developmental processes. Molecular Systems Biology, 17(8), e9895.
  • Dai, M., Yu, Z., Fang, S., ve Ma, X., (2019). Behaviors, product characteristics and kinetics of catalytic co-pyrolysis spirulina and oil shale. Energy Conversion and Management, 192, 1–10.
  • Gülsaç, I. I. (2021). Thermochemical Conversion Behavior of Turkish Lignite/Poppy Capsule Pulp Blends in N2 and CO2 Atmospheres. Gazi University Journal of Science, 1.
  • Herzog, A. V, Lipman, T. E., ve Kammen, D. M. (2001). Renewable energy sources. Encyclopedia of Life Support Systems (EOLSS). Forerunner Volume-‘Perspectives and Overview of Life Support Systems and Sustainable Development, 76.
  • Horowitz, H. H., ve Metzger, G., (1963). A new analysis of thermogravimetric traces. Analytical Chemistry, 35(10), 1464–1468.
  • Ingraham, T. R., ve Marier, P., (1963). Kinetic studies on the thermal decomposition of calcium carbonate. The Canadian Journal of Chemical Engineering, 41(4), 170–173.
  • Janković, B., Adnađević, B., ve Jovanović, J., (2005). Non-isothermal kinetics of dehydration of equilibrium swollen poly (acrylic acid) hydrogel. Journal of Thermal Analysis and Calorimetry, 82(1), 7–13.
  • Jia, G. (2021). Combustion characteristics and kinetic analysis of biomass pellet fuel using thermogravimetric analysis. Processes, 9(5), 868.
  • Jiang, X. M., Han, X. X., ve Cui, Z. G., (2007). Progress and recent utilization trends in combustion of Chinese oil shale. Progress in Energy and Combustion Science, 33(6), 552–579.
  • Kang, Z., Zhao, Y., ve Yang, D., (2020). Review of oil shale in-situ conversion technology. Applied Energy, 269, 115121.
  • Kök, M., ve Iscan, A., (2007). Oil shale kinetics by differential methods. Journal of Thermal Analysis and Calorimetry, 88(3), 657–661.
  • Korkmaz, A. A., ve Akbulut, Y., (2023). Interpretation of combustion properties of raw-pyrolyzed lignite with kinetic data. International Journal of Coal Preparation and Utilization, 43(7), 1222–1233.
  • Kumar, R., Bansal, V., Badhe, R. M., Madhira, I. S. S., Sugumaran, V., Ahmed, S., Christopher, J., Patel, M. B., ve Basu, B., (2013). Characterization of Indian origin oil shale using advanced analytical techniques. Fuel, 113, 610–616.
  • Laidler, K. J. (1984). The development of the Arrhenius equation. Journal of Chemical Education, 61(6), 494.
  • Laougé, Z. B., ve Merdun, H. (2020). Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis. Bioresource Technology, 299, 122602.
  • Lee, I. C., Lee, M. D., ve Sohn, H. Y., (1985). A DTA study of some oxidation characteristics of Colorado oil shale. Thermochimica Acta, 84, 371–375.
  • Panwar, N. L., Kaushik, S. C., ve Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3), 1513–1524.
  • Sait, H. H., Hussain, A., Salema, A. A., ve Ani, F. N. (2012). Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresource Technology, 118, 382–389.
  • Sanchez, M. E., Otero, M., Gómez, X., ve Morán, A. (2009). Thermogravimetric kinetic analysis of the combustion of biowastes. Renewable Energy, 34(6), 1622–1627.
  • Skala, D., ve Sokic, M., (1992). The determination of a complex kinetic expression of oil shale pyrolysis using combined non-isothermal and isothermal TG. Journal of Thermal Analysis and Calorimetry, 38(4), 729–738.
  • Su, J., ve Yang, J., (1995). Non-isothermal pyrolysis of two kinds of Chinese oil shale. Fuel Science & Technology International, 13(8), 945–956.
  • Sun, Y., Bai, F., Lü, X., Jia, C., Wang, Q., Guo, M., Li, Q., ve Guo, W., (2015). Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model. Energy, 82, 705–713.
  • Syed, S., Qudaih, R., Talab, I., ve Janajreh, I., (2011). Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data. Fuel, 90(4), 1631–1637.
  • Taheri-Shakib, J., ve Kantzas, A., (2021). A comprehensive review of microwave application on the oil shale: Prospects for shale oil production. Fuel, 305, 121519.
  • Thakur, D. S., ve Nuttall Jr, H. E., (1987). Kinetics of pyrolysis of Moroccan oil shale by thermogravimetry. Industrial & Engineering Chemistry Research, 26(7), 1351–1356.
  • Tiwari, P., ve Deo, M., (2012). Compositional and kinetic analysis of oil shale pyrolysis using TGA–MS. Fuel, 94, 333–341.
  • Torrente, M. C., ve Galan, M. A., (2001). Kinetics of the thermal decomposition of oil shale from Puertollano (Spain). Fuel, 80(3), 327–334.
  • Wang, S., Jiang, X., Han, X., ve Tong, J., (2012). Investigation of Chinese oil shale resources comprehensive utilization performance. Energy, 42(1), 224–232.
  • Yılmaz, G., ve Öztürkmen, B. S., (2018). GAP Bölgesi’nde Yenilenebilir Enerji Kaynakları ve Çevresel Etkileri. Harran Üniversitesi Mühendislik Dergisi, 3(3), 52–58.
  • Yorulmaz, S. Y., ve Atimtay, A. T. (2009). Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Processing Technology, 90(7–8), 939–946.
  • Zhang, J., Ding, Y., Du, W., Lu, K., ve Sun, L., (2021). Study on pyrolysis kinetics and reaction mechanism of Beizao oil shale. Fuel, 296, 120696.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering (Other)
Journal Section Articles
Authors

Yeliz Toptaş 0000-0002-0703-7055

Aydan Aksoğan Korkmaz 0000-0002-3309-9719

Early Pub Date December 18, 2023
Publication Date December 15, 2023
Published in Issue Year 2023

Cite

APA Toptaş, Y., & Aksoğan Korkmaz, A. (2023). Parçikan Bitümlü Şeylinin Termal Analiz Kinetiği ve Reaksiyon Mekanizması. Karadeniz Fen Bilimleri Dergisi, 13(4), 1648-1660. https://doi.org/10.31466/kfbd.1329907