Research Article
BibTex RIS Cite

Kimyasal Çöktürme Yöntemiyle Persülfat Aktivasyonu için Aktif Karbon Destekli Demir ve Kobalt Bazlı Katalizör Sentezi ve Eritromisin Degradasyonu için Uygulaması

Year 2023, , 1780 - 1797, 15.12.2023
https://doi.org/10.31466/kfbd.1336484

Abstract

Kalıcı organik kirleticilerin sucul ortamlardan ileri oksidasyon yöntemleriyle giderimi için etkili, ekonomik ve çevre dostu heterojen katalizörlerin geliştirilmesi son zamanlarda oldukça önem kazanmıştır. Bu çalışmada, aktif karbon (AC) destekli demir (CP-Fe) ve kobalt (CP-Co) bazlı katalizörler kimyasal çöktürme yöntemiyle hazırlanmıştır. Hazırlanan katalizörler FTIR, FESEM, EDX-haritalama, XRD, pHpzc, Boehm titrasyonu ve BET yüzey alanı teknikleri kullanılarak karakterize edilmiştir. AC destekli CP-Fe ve CP-Co katalizörlerin spesifik yüzey alanlarının sırasıyla 396.42 ve 441.76 m2/g olduğu ve her iki katalizörün de mezo gözenekli bir yapıya sahip olduğu belirlenmiştir. Demir ve kobaltın AC yüzeyine homojen bir şekilde yayılmış olduğu, demirin manyetit (Fe3O4) ve kobaltın ise amorf yapıda olduğu tespit edilmiştir. Katalizörlerin katalitik aktiviteleri, persülfat aktivasyonu ile eritromisin (ERY) degradasyonunda test edilmiştir. CP-Fe katalizör varlığında ERY 60 dk’da %96 oranında degrede olurken, CP-Co katalizör varlığında 30 dk içinde tamamen degrede olmuştur. Her iki katalizörün de adsorpsiyon ve degradasyonun birlikte sinerjik etkisiyle ERY’yi parçalamada ve gidermede yüksek katalitik aktivite gösterdiği belirlenmiştir.

Supporting Institution

TÜBİTAK

Project Number

117Y300

Thanks

Bu çalışma 117Y300 numaralı proje ile Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından desteklenmiştir. Katkılarından dolayı TÜBİTAK'a teşekkür ederiz.

References

  • Akçakal, Ö., Şahin, M., & Erdem, M. (2019). Synthesis and characterization of high-quality activated carbons from hard-shelled agricultural wastes mixture by zinc chloride activation. Chemical Engineering Communications, 206(7), 888-897. https://doi.org/10.1080/00986445.2018.1534231
  • Al-Hazmi, G. A. A., El-Zahhar, A. A., El-Desouky, M. G., El-Bindary, M. A., & El-Bindary, A. A. (2022). Adsorption of industrial dye onto a zirconium metal-organic framework: synthesis, characterization, kinetics, thermodynamics, and DFT calculations. Journal of Coordination Chemistry, 75(9-10), 1203-1229. https://doi.org/10.1080/00958972.2022.2114349
  • Altıntıg, E., Altundag, H., Tuzen, M., & Sarı, A. (2017). Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chemical Engineering Research and Design, 122, 151-163. https://doi.org/10.1016/j.cherd.2017.03.035
  • Arends, I. W. C. E., & Sheldon, R. A. (2001). Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A: General, 212(1), 175-187. https://doi.org/10.1016/S0926-860X(00)00855-3
  • Barbosa, M. O., Moreira, N. F. F., Ribeiro, A. R., Pereira, M. F. R., & Silva, A. M. T. (2016). Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Research, 94, 257-279. https://doi.org/10.1016/j.watres.2016.02.047
  • Boehm, H. P. (2002). Surface oxides on carbon and their analysis: a critical assessment. Carbon, 40(2), 145-149. https://doi.org/10.1016/S0008-6223(01)00165-8
  • Carrott, P. J. M., Nabais, J. M. V., Carrott, M. M. L. R., & Menéndez, J. A. (2001). Thermal treatments of activated carbon fibres using a microwave furnace. Microporous and Mesoporous Materials, 47(2), 243-252. https://doi.org/10.1016/S1387-1811(01)00384-5
  • Erdem, H. ve Erdem, M. (2021a, 20-22 May 2021). Efficient Degradation of Fenoprofen from Aquatic Environments Using an Activated Carbon-Supported Iron-Based Catalyst, II. International Conference on Innovative Engineering Applications (CIEA’ 2021), Muş Alparslan University, Muş, Türkiye.
  • Erdem, H. ve Erdem, M. (2021b, 20-22 May 2021). Tetracycline Degradation by Persulfate Activation Using an Efficient Heterogeneous Catalyst, II. International Conference on Innovative Engineering Applications (CIEA’ 2021), Muş Alparslan University, Muş, Türkiye.
  • Erdem, H. ve Erdem, M. (2022a). Ciprofloxacin Degradation with Persulfate Activated with the Synergistic Effect of the Activated Carbon and Cobalt Dual Catalyst. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-022-06907-1
  • Erdem, H. ve Erdem, M. (2022b). Persülfatın Heterojen Aktivasyonu için Aktif Karbon Destekli Kobalt-Bazlı Katalizör Kullanılarak Fenoprofenin Degradasyonu, Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 3(2), 71-81.
  • Erdem, H. ve Erdem, M. (2022c). Synthesis and characterization of a novel activated carbon–supported cobalt catalyst from biomass mixture for tetracycline degradation via persulfate activation. Biomass Conversion and Biorefinery, 12(8), 3513-3524. https://doi.org/10.1007/s13399-020-00963-z
  • Everett, D. (1972). Definitions, terminology and symbols in colloid and surface chemistry. Pure Appl. Chem, 31(4), 577-638.
  • Fan, H., Chen, C., Huang, Q., Lu, J., Hu, J., Wang, P., Liang, J., Hu, H., & Gan, T. (2022). Zinc-doped and biochar support strategies to enhance the catalytic activity of CuFe2O4 to persulfate for crystal violet degradation. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-24929-y
  • Giraldo, L., Vargas, D. P., & Moreno-Piraján, J. C. (2020). Study of CO(2) Adsorption on Chemically Modified Activated Carbon With Nitric Acid and Ammonium Aqueous. Front Chem, 8, 543452. https://doi.org/10.3389/fchem.2020.543452
  • Gopinath, A., Pisharody, L., Popat, A., & Nidheesh, P. V. (2022). Supported catalysts for heterogeneous electro-Fenton processes: Recent trends and future directions. Current Opinion in Solid State and Materials Science, 26(2), 100981. https://doi.org/10.1016/j.cossms.2022.100981
  • Guo, Y., Zeng, Z., Li, Y., Huang, Z., & Cui, Y. (2018). In-situ sulfur-doped carbon as a metal-free catalyst for persulfate activated oxidation of aqueous organics. Catalysis Today, 307, 12-19. https://doi.org/10.1016/j.cattod.2017.05.080
  • Hadi, S., Taheri, E., Amin, M. M., Fatehizadeh, A., & Khayet, M. (2022). Magnetized Activated Carbon Synthesized from Pomegranate Husk for Persulfate Activation and Degradation of 4-Chlorophenol from Wastewater. Applied Sciences, 12(3).
  • Haldar, D., Duarah, P., & Purkait, M. K. (2020). MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review. Chemosphere, 251, 126388. https://doi.org/10.1016/j.chemosphere.2020.126388
  • Hassani, A., Eghbali, P., Kakavandi, B., Lin, K.-Y. A., & Ghanbari, F. (2020). Acetaminophen removal from aqueous solutions through peroxymonosulfate activation by CoFe2O4/mpg-C3N4 nanocomposite: Insight into the performance and degradation kinetics. Environmental Technology & Innovation, 20, 101127. https://doi.org/10.1016/j.eti.2020.101127
  • He, Y., Wang, Z., Wang, H., Almatrafi, E., Qin, H., Huang, D., Zhu, Y., Zhou, C., Tian, Q., Xu, P., & Zeng, G. (2022). Confinement of ZIF-derived copper-cobalt-zinc oxides in carbon framework for degradation of organic pollutants. Journal of Hazardous Materials, 440, 129811. https://doi.org/10.1016/j.jhazmat.2022.129811
  • Kiani, R., Mirzaei, F., Ghanbari, F., Feizi, R., & Mehdipour, F. (2020). Real textile wastewater treatment by a sulfate radicals-Advanced Oxidation Process: Peroxydisulfate decomposition using copper oxide (CuO) supported onto activated carbon. Journal of Water Process Engineering, 38, 101623. https://doi.org/10.1016/j.jwpe.2020.101623
  • Lei, Z., Pang, X., Li, N., Lin, L., & Li, Y. (2009). A novel two-step modifying process for preparation of chitosan-coated Fe3O4/SiO2 microspheres. Journal of Materials Processing Technology, 209(7), 3218-3225. https://doi.org/10.1016/j.jmatprotec.2008.07.044
  • Li, B., Dai, L.-Y., Wang, W.-S., & Xu, H.-Y. (2022). Urchin-like Co3O4 as a heterogenous peroxymonosulfate catalyst for crystal violet degradation: Reaction kinetics and process optimization. Materials Today Communications, 33, 104388. https://doi.org/10.1016/j.mtcomm.2022.104388
  • Li, H., Wan, J., Ma, Y., & Wang, Y. (2016). Synthesis of novel core–shell Fe0@Fe3O4 as heterogeneous activator of persulfate for oxidation of dibutyl phthalate under neutral conditions. Chemical Engineering Journal, 301, 315-324. https://doi.org/10.1016/j.cej.2016.04.147
  • Li, R., Jin, X., Megharaj, M., Naidu, R., & Chen, Z. (2015). Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chemical Engineering Journal, 264, 587-594. https://doi.org/10.1016/j.cej.2014.11.128
  • Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H., & Chen, H. (2014). Characterization of Modified Biochars Derived from Bamboo Pyrolysis and Their Utilization for Target Component (Furfural) Adsorption. Energy & Fuels, 28(8), 5119-5127. https://doi.org/10.1021/ef500725c
  • Liew, R. K., Chong, M. Y., Osazuwa, O. U., Nam, W. L., Phang, X. Y., Su, M. H., . . . Lam, S. S. (2018). Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation. Research on Chemical Intermediates, 44(6), 3849-3865. https://doi.org/10.1007/s11164-018-3388-y
  • Lin, H., Zhang, H., & Hou, L. (2014). Degradation of C. I. Acid Orange 7 in aqueous solution by a novel electro/Fe3O4/PDS process. Journal of Hazardous Materials, 276, 182-191. https://doi.org/10.1016/j.jhazmat.2014.05.021
  • Liu, X., Yao, Y., Lu, J., Zhou, J., & Chen, Q. (2023). Catalytic activity and mechanism of typical iron-based catalysts for Fenton-like oxidation. Chemosphere, 311, 136972. https://doi.org/10.1016/j.chemosphere.2022.136972
  • Lua, A. C., & Yang, T. (2005). Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. Journal of Colloid and Interface Science, 290(2), 505-513. https://doi.org/10.1016/j.jcis.2005.04.063
  • Lyu, C., He, D., Chang, Y., Zhang, Q., Wen, F., & Wang, X. (2019). Cobalt oxyhydroxide as an efficient heterogeneous catalyst of peroxymonosulfate activation for oil-contaminated soil remediation. Science of The Total Environment, 680, 61-69. https://doi.org/10.1016/j.scitotenv.2019.04.324
  • Martins, A. C., Pezoti, O., Cazetta, A. L., Bedin, K. C., Yamazaki, D. A. S., Bandoch, G. F. G., Asefa, T., Visentainer, J. V., & Almeida, V. C. (2015). Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chemical Engineering Journal, 260, 291-299. https://doi.org/10.1016/j.cej.2014.09.017
  • Mensah, K., Mahmoud, H., Fujii, M., & Shokry, H. (2022). Novel nano-ferromagnetic activated graphene adsorbent extracted from waste for dye decolonization. Journal of Water Process Engineering, 45, 102512. https://doi.org/10.1016/j.jwpe.2021.102512
  • Mohan, D., Sarswat, A., Singh, V. K., Alexandre-Franco, M., & Pittman, C. U. (2011). Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chemical Engineering Journal, 172(2), 1111-1125. https://doi.org/10.1016/j.cej.2011.06.054
  • Muttil, N., Jagadeesan, S., Chanda, A., Duke, M., & Singh, S. K. (2023). Production, Types, and Applications of Activated Carbon Derived from Waste Tyres: An Overview. Applied Sciences, 13(1).
  • Olfatmehr, N., Kakavandi, B., & Khezri, S. M. (2022). Peroxydisulfate activation by enhanced catalytic activity of CoFe2O4 anchored on activated carbon: A new sulfate radical-based oxidation study on the Cefixime degradation. Separation and Purification Technology, 302, 121991. https://doi.org/10.1016/j.seppur.2022.121991
  • Scaria, J., Gopinath, A., Ranjith, N., Ravindran, V., Ummar, S., Nidheesh, P. V., & Kumar, M. S. (2022). Carbonaceous materials as effective adsorbents and catalysts for the removal of emerging contaminants from water. Journal of Cleaner Production, 350, 131319. https://doi.org/10.1016/j.jclepro.2022.131319
  • Serp, P., Corrias, M., & Kalck, P. (2003). Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 253(2), 337-358. https://doi.org/10.1016/S0926-860X(03)00549-0
  • Sharma, S., Kaur, M., Sharma, C., Choudhary, A., & Paul, S. (2021). Biomass-Derived Activated Carbon-Supported Copper Catalyst: An Efficient Heterogeneous Magnetic Catalyst for Base-Free Chan–Lam Coupling and Oxidations. ACS Omega, 6(30), 19529-19545. https://doi.org/10.1021/acsomega.1c01830
  • Shokry, H., Elkady, M., & Hamad, H. (2019). Nano activated carbon from industrial mine coal as adsorbents for removal of dye from simulated textile wastewater: operational parameters and mechanism study. Journal of Materials Research and Technology, 8(5), 4477-4488. https://doi.org/10.1016/j.jmrt.2019.07.061
  • Somyanonthanakun, W., Greszta, A., Roberts, A. J., & Thongmee, S. (2023). Sugarcane Bagasse-Derived Activated Carbon as a Potential Material for Lead Ions Removal from Aqueous Solution and Supercapacitor Energy Storage Application. Sustainability, 15(6).
  • Swanson, H. E., McMurdie, H.F., Morris, M.C. and Evans, E.H. (1967). Standard X-ray Diffraction Powder Patterns: Section 5. Data for 80 Substances. N. B. o. S. U.S. Department of Commerce.
  • Tian, N., Giannakis, S., Akbarzadeh, L., Hasanvandian, F., Dehghanifard, E., & Kakavandi, B. (2023). Improved catalytic performance of ZnO via coupling with CoFe2O4 and carbon nanotubes: A new, photocatalysis-mediated peroxymonosulfate activation system, applied towards Cefixime degradation. Journal of Environmental Management, 329, 117022. https://doi.org/10.1016/j.jenvman.2022.117022
  • Yang, Q., Yang, Y., Zhang, Y., Zhang, L., Sun, S., Dong, K., Luo, Y., Wu, J., Kang, X., Liu, Q., Hamdy, M.S., & Sun, X. (2023). Highly efficient activation of peroxymonosulfate by biomass juncus derived carbon decorated with cobalt nanoparticles for the degradation of ofloxacin. Chemosphere, 311, 137020. https://doi.org/10.1016/j.chemosphere.2022.137020
  • Yang, W., Li, X., Jiang, Z., Li, C., Zhao, J., Wang, H., & Liao, Q. (2020). Structure-dependent catalysis of Co3O4 crystals in persulfate activation via nonradical pathway. Applied Surface Science, 525, 146482. https://doi.org/10.1016/j.apsusc.2020.146482
  • Zhang, J., Chen, M., & Zhu, L. (2016). Activation of persulfate by Co3O4 nanoparticles for orange G degradation. RSC Advances, 6(1), 758-768. https://doi.org/10.1039/C5RA22457H
  • Zhao, Y., Zhan, X., Sun, Y., Wang, H., Chen, L., Liu, J., & Shi, H. (2023). MnOx@N-doped carbon nanosheets derived from Mn-MOFs and g-C3N4 for peroxymonosulfate activation: Electron-rich Mn center induced by N doping. Chemosphere, 310, 136937. https://doi.org/10.1016/j.chemosphere.2022.136937

Synthesis of Activated Carbon-Supported Iron and Cobalt Based Catalysts by Chemical Precipitation Route for Persulfate Activation and Its Application for Erythromycin Degradation

Year 2023, , 1780 - 1797, 15.12.2023
https://doi.org/10.31466/kfbd.1336484

Abstract

The development of efficient, economical and environmentally friendly heterogeneous catalysts for the removal of persistent organic pollutants from aquatic environments has recently become important. In this study, the activated carbon (AC) supported iron (CP-Fe) and cobalt (CP-Co) based catalysts were successfully prepared by the chemical precipitation method. The prepared catalysts were characterized using FTIR, FESEM, EDX-mapping, XRD, pHpzc, Boehm titration and BET surface area. It was determined that the specific surface areas of CP-Fe and CP-Co catalysts were 396.42 and 441.76 m2/g, respectively, and both catalysts had a mesoporous structure. SEM-EDX and XRD analysis showed that the iron and cobalt were uniformly dispersed on the AC support surface and iron in the structure was in the form of magnetite (Fe3O4) and the cobalt was in the amorphous form. The catalytic activities of the catalysts were evaluated for degradation of erythromycin (ERY) by persulfate activation. While 96% of ERY was decomposed for 60 min in the presence of CP-Fe catalyst, it was completely decomposed within 30 min in the presence of CP-Co catalyst. It was determined that both catalysts showed high catalytic activity for ERY removal with the synergistic effect of adsorption and degradation.

Project Number

117Y300

References

  • Akçakal, Ö., Şahin, M., & Erdem, M. (2019). Synthesis and characterization of high-quality activated carbons from hard-shelled agricultural wastes mixture by zinc chloride activation. Chemical Engineering Communications, 206(7), 888-897. https://doi.org/10.1080/00986445.2018.1534231
  • Al-Hazmi, G. A. A., El-Zahhar, A. A., El-Desouky, M. G., El-Bindary, M. A., & El-Bindary, A. A. (2022). Adsorption of industrial dye onto a zirconium metal-organic framework: synthesis, characterization, kinetics, thermodynamics, and DFT calculations. Journal of Coordination Chemistry, 75(9-10), 1203-1229. https://doi.org/10.1080/00958972.2022.2114349
  • Altıntıg, E., Altundag, H., Tuzen, M., & Sarı, A. (2017). Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chemical Engineering Research and Design, 122, 151-163. https://doi.org/10.1016/j.cherd.2017.03.035
  • Arends, I. W. C. E., & Sheldon, R. A. (2001). Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A: General, 212(1), 175-187. https://doi.org/10.1016/S0926-860X(00)00855-3
  • Barbosa, M. O., Moreira, N. F. F., Ribeiro, A. R., Pereira, M. F. R., & Silva, A. M. T. (2016). Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Research, 94, 257-279. https://doi.org/10.1016/j.watres.2016.02.047
  • Boehm, H. P. (2002). Surface oxides on carbon and their analysis: a critical assessment. Carbon, 40(2), 145-149. https://doi.org/10.1016/S0008-6223(01)00165-8
  • Carrott, P. J. M., Nabais, J. M. V., Carrott, M. M. L. R., & Menéndez, J. A. (2001). Thermal treatments of activated carbon fibres using a microwave furnace. Microporous and Mesoporous Materials, 47(2), 243-252. https://doi.org/10.1016/S1387-1811(01)00384-5
  • Erdem, H. ve Erdem, M. (2021a, 20-22 May 2021). Efficient Degradation of Fenoprofen from Aquatic Environments Using an Activated Carbon-Supported Iron-Based Catalyst, II. International Conference on Innovative Engineering Applications (CIEA’ 2021), Muş Alparslan University, Muş, Türkiye.
  • Erdem, H. ve Erdem, M. (2021b, 20-22 May 2021). Tetracycline Degradation by Persulfate Activation Using an Efficient Heterogeneous Catalyst, II. International Conference on Innovative Engineering Applications (CIEA’ 2021), Muş Alparslan University, Muş, Türkiye.
  • Erdem, H. ve Erdem, M. (2022a). Ciprofloxacin Degradation with Persulfate Activated with the Synergistic Effect of the Activated Carbon and Cobalt Dual Catalyst. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-022-06907-1
  • Erdem, H. ve Erdem, M. (2022b). Persülfatın Heterojen Aktivasyonu için Aktif Karbon Destekli Kobalt-Bazlı Katalizör Kullanılarak Fenoprofenin Degradasyonu, Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 3(2), 71-81.
  • Erdem, H. ve Erdem, M. (2022c). Synthesis and characterization of a novel activated carbon–supported cobalt catalyst from biomass mixture for tetracycline degradation via persulfate activation. Biomass Conversion and Biorefinery, 12(8), 3513-3524. https://doi.org/10.1007/s13399-020-00963-z
  • Everett, D. (1972). Definitions, terminology and symbols in colloid and surface chemistry. Pure Appl. Chem, 31(4), 577-638.
  • Fan, H., Chen, C., Huang, Q., Lu, J., Hu, J., Wang, P., Liang, J., Hu, H., & Gan, T. (2022). Zinc-doped and biochar support strategies to enhance the catalytic activity of CuFe2O4 to persulfate for crystal violet degradation. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-24929-y
  • Giraldo, L., Vargas, D. P., & Moreno-Piraján, J. C. (2020). Study of CO(2) Adsorption on Chemically Modified Activated Carbon With Nitric Acid and Ammonium Aqueous. Front Chem, 8, 543452. https://doi.org/10.3389/fchem.2020.543452
  • Gopinath, A., Pisharody, L., Popat, A., & Nidheesh, P. V. (2022). Supported catalysts for heterogeneous electro-Fenton processes: Recent trends and future directions. Current Opinion in Solid State and Materials Science, 26(2), 100981. https://doi.org/10.1016/j.cossms.2022.100981
  • Guo, Y., Zeng, Z., Li, Y., Huang, Z., & Cui, Y. (2018). In-situ sulfur-doped carbon as a metal-free catalyst for persulfate activated oxidation of aqueous organics. Catalysis Today, 307, 12-19. https://doi.org/10.1016/j.cattod.2017.05.080
  • Hadi, S., Taheri, E., Amin, M. M., Fatehizadeh, A., & Khayet, M. (2022). Magnetized Activated Carbon Synthesized from Pomegranate Husk for Persulfate Activation and Degradation of 4-Chlorophenol from Wastewater. Applied Sciences, 12(3).
  • Haldar, D., Duarah, P., & Purkait, M. K. (2020). MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review. Chemosphere, 251, 126388. https://doi.org/10.1016/j.chemosphere.2020.126388
  • Hassani, A., Eghbali, P., Kakavandi, B., Lin, K.-Y. A., & Ghanbari, F. (2020). Acetaminophen removal from aqueous solutions through peroxymonosulfate activation by CoFe2O4/mpg-C3N4 nanocomposite: Insight into the performance and degradation kinetics. Environmental Technology & Innovation, 20, 101127. https://doi.org/10.1016/j.eti.2020.101127
  • He, Y., Wang, Z., Wang, H., Almatrafi, E., Qin, H., Huang, D., Zhu, Y., Zhou, C., Tian, Q., Xu, P., & Zeng, G. (2022). Confinement of ZIF-derived copper-cobalt-zinc oxides in carbon framework for degradation of organic pollutants. Journal of Hazardous Materials, 440, 129811. https://doi.org/10.1016/j.jhazmat.2022.129811
  • Kiani, R., Mirzaei, F., Ghanbari, F., Feizi, R., & Mehdipour, F. (2020). Real textile wastewater treatment by a sulfate radicals-Advanced Oxidation Process: Peroxydisulfate decomposition using copper oxide (CuO) supported onto activated carbon. Journal of Water Process Engineering, 38, 101623. https://doi.org/10.1016/j.jwpe.2020.101623
  • Lei, Z., Pang, X., Li, N., Lin, L., & Li, Y. (2009). A novel two-step modifying process for preparation of chitosan-coated Fe3O4/SiO2 microspheres. Journal of Materials Processing Technology, 209(7), 3218-3225. https://doi.org/10.1016/j.jmatprotec.2008.07.044
  • Li, B., Dai, L.-Y., Wang, W.-S., & Xu, H.-Y. (2022). Urchin-like Co3O4 as a heterogenous peroxymonosulfate catalyst for crystal violet degradation: Reaction kinetics and process optimization. Materials Today Communications, 33, 104388. https://doi.org/10.1016/j.mtcomm.2022.104388
  • Li, H., Wan, J., Ma, Y., & Wang, Y. (2016). Synthesis of novel core–shell Fe0@Fe3O4 as heterogeneous activator of persulfate for oxidation of dibutyl phthalate under neutral conditions. Chemical Engineering Journal, 301, 315-324. https://doi.org/10.1016/j.cej.2016.04.147
  • Li, R., Jin, X., Megharaj, M., Naidu, R., & Chen, Z. (2015). Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chemical Engineering Journal, 264, 587-594. https://doi.org/10.1016/j.cej.2014.11.128
  • Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H., & Chen, H. (2014). Characterization of Modified Biochars Derived from Bamboo Pyrolysis and Their Utilization for Target Component (Furfural) Adsorption. Energy & Fuels, 28(8), 5119-5127. https://doi.org/10.1021/ef500725c
  • Liew, R. K., Chong, M. Y., Osazuwa, O. U., Nam, W. L., Phang, X. Y., Su, M. H., . . . Lam, S. S. (2018). Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation. Research on Chemical Intermediates, 44(6), 3849-3865. https://doi.org/10.1007/s11164-018-3388-y
  • Lin, H., Zhang, H., & Hou, L. (2014). Degradation of C. I. Acid Orange 7 in aqueous solution by a novel electro/Fe3O4/PDS process. Journal of Hazardous Materials, 276, 182-191. https://doi.org/10.1016/j.jhazmat.2014.05.021
  • Liu, X., Yao, Y., Lu, J., Zhou, J., & Chen, Q. (2023). Catalytic activity and mechanism of typical iron-based catalysts for Fenton-like oxidation. Chemosphere, 311, 136972. https://doi.org/10.1016/j.chemosphere.2022.136972
  • Lua, A. C., & Yang, T. (2005). Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. Journal of Colloid and Interface Science, 290(2), 505-513. https://doi.org/10.1016/j.jcis.2005.04.063
  • Lyu, C., He, D., Chang, Y., Zhang, Q., Wen, F., & Wang, X. (2019). Cobalt oxyhydroxide as an efficient heterogeneous catalyst of peroxymonosulfate activation for oil-contaminated soil remediation. Science of The Total Environment, 680, 61-69. https://doi.org/10.1016/j.scitotenv.2019.04.324
  • Martins, A. C., Pezoti, O., Cazetta, A. L., Bedin, K. C., Yamazaki, D. A. S., Bandoch, G. F. G., Asefa, T., Visentainer, J. V., & Almeida, V. C. (2015). Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chemical Engineering Journal, 260, 291-299. https://doi.org/10.1016/j.cej.2014.09.017
  • Mensah, K., Mahmoud, H., Fujii, M., & Shokry, H. (2022). Novel nano-ferromagnetic activated graphene adsorbent extracted from waste for dye decolonization. Journal of Water Process Engineering, 45, 102512. https://doi.org/10.1016/j.jwpe.2021.102512
  • Mohan, D., Sarswat, A., Singh, V. K., Alexandre-Franco, M., & Pittman, C. U. (2011). Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chemical Engineering Journal, 172(2), 1111-1125. https://doi.org/10.1016/j.cej.2011.06.054
  • Muttil, N., Jagadeesan, S., Chanda, A., Duke, M., & Singh, S. K. (2023). Production, Types, and Applications of Activated Carbon Derived from Waste Tyres: An Overview. Applied Sciences, 13(1).
  • Olfatmehr, N., Kakavandi, B., & Khezri, S. M. (2022). Peroxydisulfate activation by enhanced catalytic activity of CoFe2O4 anchored on activated carbon: A new sulfate radical-based oxidation study on the Cefixime degradation. Separation and Purification Technology, 302, 121991. https://doi.org/10.1016/j.seppur.2022.121991
  • Scaria, J., Gopinath, A., Ranjith, N., Ravindran, V., Ummar, S., Nidheesh, P. V., & Kumar, M. S. (2022). Carbonaceous materials as effective adsorbents and catalysts for the removal of emerging contaminants from water. Journal of Cleaner Production, 350, 131319. https://doi.org/10.1016/j.jclepro.2022.131319
  • Serp, P., Corrias, M., & Kalck, P. (2003). Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 253(2), 337-358. https://doi.org/10.1016/S0926-860X(03)00549-0
  • Sharma, S., Kaur, M., Sharma, C., Choudhary, A., & Paul, S. (2021). Biomass-Derived Activated Carbon-Supported Copper Catalyst: An Efficient Heterogeneous Magnetic Catalyst for Base-Free Chan–Lam Coupling and Oxidations. ACS Omega, 6(30), 19529-19545. https://doi.org/10.1021/acsomega.1c01830
  • Shokry, H., Elkady, M., & Hamad, H. (2019). Nano activated carbon from industrial mine coal as adsorbents for removal of dye from simulated textile wastewater: operational parameters and mechanism study. Journal of Materials Research and Technology, 8(5), 4477-4488. https://doi.org/10.1016/j.jmrt.2019.07.061
  • Somyanonthanakun, W., Greszta, A., Roberts, A. J., & Thongmee, S. (2023). Sugarcane Bagasse-Derived Activated Carbon as a Potential Material for Lead Ions Removal from Aqueous Solution and Supercapacitor Energy Storage Application. Sustainability, 15(6).
  • Swanson, H. E., McMurdie, H.F., Morris, M.C. and Evans, E.H. (1967). Standard X-ray Diffraction Powder Patterns: Section 5. Data for 80 Substances. N. B. o. S. U.S. Department of Commerce.
  • Tian, N., Giannakis, S., Akbarzadeh, L., Hasanvandian, F., Dehghanifard, E., & Kakavandi, B. (2023). Improved catalytic performance of ZnO via coupling with CoFe2O4 and carbon nanotubes: A new, photocatalysis-mediated peroxymonosulfate activation system, applied towards Cefixime degradation. Journal of Environmental Management, 329, 117022. https://doi.org/10.1016/j.jenvman.2022.117022
  • Yang, Q., Yang, Y., Zhang, Y., Zhang, L., Sun, S., Dong, K., Luo, Y., Wu, J., Kang, X., Liu, Q., Hamdy, M.S., & Sun, X. (2023). Highly efficient activation of peroxymonosulfate by biomass juncus derived carbon decorated with cobalt nanoparticles for the degradation of ofloxacin. Chemosphere, 311, 137020. https://doi.org/10.1016/j.chemosphere.2022.137020
  • Yang, W., Li, X., Jiang, Z., Li, C., Zhao, J., Wang, H., & Liao, Q. (2020). Structure-dependent catalysis of Co3O4 crystals in persulfate activation via nonradical pathway. Applied Surface Science, 525, 146482. https://doi.org/10.1016/j.apsusc.2020.146482
  • Zhang, J., Chen, M., & Zhu, L. (2016). Activation of persulfate by Co3O4 nanoparticles for orange G degradation. RSC Advances, 6(1), 758-768. https://doi.org/10.1039/C5RA22457H
  • Zhao, Y., Zhan, X., Sun, Y., Wang, H., Chen, L., Liu, J., & Shi, H. (2023). MnOx@N-doped carbon nanosheets derived from Mn-MOFs and g-C3N4 for peroxymonosulfate activation: Electron-rich Mn center induced by N doping. Chemosphere, 310, 136937. https://doi.org/10.1016/j.chemosphere.2022.136937
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering (Other)
Journal Section Articles
Authors

Hatice Erdem 0000-0002-7666-8301

Mehmet Erdem 0000-0002-3544-7203

Project Number 117Y300
Early Pub Date December 18, 2023
Publication Date December 15, 2023
Published in Issue Year 2023

Cite

APA Erdem, H., & Erdem, M. (2023). Kimyasal Çöktürme Yöntemiyle Persülfat Aktivasyonu için Aktif Karbon Destekli Demir ve Kobalt Bazlı Katalizör Sentezi ve Eritromisin Degradasyonu için Uygulaması. Karadeniz Fen Bilimleri Dergisi, 13(4), 1780-1797. https://doi.org/10.31466/kfbd.1336484