Research Article
BibTex RIS Cite

In silico Investigation of the Interactions of Thymol and Carvacrol on the Spike Protein of Omicron Variant and MPro Enzyme of Coronavirus

Year 2024, , 997 - 1005, 15.09.2024
https://doi.org/10.31466/kfbd.1338012

Abstract

Many drug studies have been conducted against the coronavirus disease, which has affected the whole world since December 2019, and some studies have been carried out on natural treatment methods. Many ideas for curing coronavirus disease of T. vulgaris known as thyme plant have been presented, although there are gaps in the literature on the subject. In this work, the anti-severe acute respiratory syndrome coronavirus 2 potential of the major compounds of the T. vulgaris plant’s essential oil was investigated in silico. The major components of the T. vulgaris plant's essential oil are thymol and carvacrol. Using molecular docking experiments, we evaluated the effects of thymol and carvacrol in thyme essential oil on Omicron variant spike protein and main protease enzyme (Mpro) of severe acute respiratory syndrome coronavirus 2. We also used online databases to investigate the adsorption, distribution, metabolism, absorption, and toxic (ADMET) aspects of these two compounds. It was determined that thymol and carvacrol have strong binding affinity to the spike protein of the Omicron variant and the main protease enzyme. The compounds interact with target proteins through electrostatic, hydrogen bonds, and hydrophobic interactions. More promising findings are obtained when the contacts of carvacrol with target proteins are assessed in terms of the structure-activity relationship.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Alp, M & Alp, A.S. (2019). Medisinal Kimyaya Kısa Bir Giriş (1st ed.). Akademisyen Kitabevi.
  • Amirghofran, Z., Ahmadi, H., Karimi, M. H. (2012). Immunomodulatory Activity of the Water Extract of Thymus vulgaris, Thymus daenensis, and Zataria multiflora on Dendritic Cells and T Cells Responses. Journal of Immunoassay and Immunochemistry, 33(4), 388–402. https://doi.org/10.1080/15321819.2012.655822.
  • Banerjee, P., Eckert, A. O., Schrey, A. K., Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46, W257–W263. https://doi.org/10.1093/nar/gky318.
  • Bank, R. P. D. RCSB PDB - 7T9J: Cryo-EM structure of the SARS-CoV-2 Omicron spike protein. Retrieved July 25, 2022, from https://www.rcsb.org/structure/7T9J.
  • BIOVIA, Dassault Systèmes, (2021). BIOVA Discovery Studio Visualizer 2021, v21.1.0.20298, San Diego: Dassault Systèmes,
  • Catella, C., Camero, M., Lucente, M.S., Fracchiolla, G., Sblano, S., Tempesta, M., Martella, V., Buonavoglia, C., Lanave, G. (2021). Virucidal and antiviral effects of Thymus vulgaris essential oil on feline coronavirus, Research in Veterinary Science, 137, 44-47. https://doi.org/10.1016/j.rvsc.2021.04.024.
  • Narkhede R. R., Cheke R. S., Ambhore J. P., Shinde S. D., (2020). The Molecular Docking Study of Potential Drug Candidates Showing Anti-COVID-19 Activity by Exploring of Therapeutic Targets of SARS-CoV-2. Eurasian Journal of Medicine and Oncology. 4(3), 185-195.| DOI: 10.14744/ejmo.2020.31503.
  • Daina, A., Michielin, O., Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717.
  • Daoud, S., Alabed, S. J., Dahabiyeh, L. A. (2021). Identification of potential COVID-19 main protease inhibitors using structure-based pharmacophore approach, molecular docking and repurposing studies. Acta Pharmaceutica, 71(2), 163–174. https://doi.org/10.2478/acph-2021-0016.
  • Fakhar, Z., Khan, S., AlOmar, S. Y., Alkhuriji, A., Ahmad, A. (2021). ABBV-744 as a potential inhibitor of SARS-CoV-2 main protease enzyme against COVID-19. Scientific Reports, 11(1), 234. https://doi.org/10.1038/s41598-020-79918-3.
  • Hadidi, S. (n.d.). Evaluation of the inhibitory activities of thyme compounds against corona- virus disease-19 (COVID-19) by molecular docking and molecular dynamic simulation. Trends in Pharmaceutical Sciences, 8(2), 95-106.
  • Ipek, E., Zeytinoglu, H., Okay, S., Tuylu, B. A., Kurkcuoglu, M., Baser, K. H. C. (2005). Genotoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella/microsomal test. Food Chemistry, 93(3), 551–556. https://doi.org/10.1016/j.foodchem.2004.12.034
  • Jain, S., Potschka, H., Chandra, P. P., Tripathi, M., Vohora, D. (2021). Management of COVID-19 in patients with seizures: Mechanisms of action of potential COVID-19 drug treatments and consideration for potential drug-drug interactions with anti-seizure medications. Epilepsy Research, 174, 106675. https://doi.org/10.1016/j.eplepsyres.2021.106675.
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Parmar, G., Shah, A., Shah, S., Seth, A. K. (2022). Identification of bioactive phytoconstituents from the plant euphorbia hirta as potential inhibitor of sars-cov-2: An in-silico approach. Biointerface Research in Applied Chemistry, 12(2), 1385–1396.
  • Sampangi-Ramaiah, M. H., Vishwakarma, R., Shaanker, R. U. (2020). Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Current Science, 118(7), 1087-1092.
  • Sardari, S., Mobaiend, A., Ghassemifard, L., Kamali, K., Khavasi, N. (2021). Therapeutic Effect of Thyme (Thymus Vulgaris) Essential Oil on Patients with COVID19: A Randomized Clinical Trial. Journal of Advances in Medical and Biomedical Research, 29(133), 83-91.
  • Singh, S., Florez, H. (2020). Coronavirus disease 2019 drug discovery through molecular docking. F1000Research, 9, 502. https://doi.org/10.12688/f1000research.24218.1
  • Trott, O., Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334

Timol ve Karvakrolün Koronavirüsün Ana Proteaz Enzimi ve Omicron Varyantının Spike Proteini ve Üzerindeki Etkileşimlerinin In Silico Araştırılması

Year 2024, , 997 - 1005, 15.09.2024
https://doi.org/10.31466/kfbd.1338012

Abstract

Aralık 2019'dan beri dünyayı etkisi almış olan koronavirüs hastalığına karşı birçok ilaç çalışması yapılmış ve doğal tedavi yöntemleri üzerine bazı çalışmalar yapılmıştır. Kekik olarak bilinen T. vulgaris’in koronavirüs hastalığı tedavisi ile ilgili birçok öneride bulunulmuş ancak bu konu ile ilgili literatürde boşluklar bulunmaktadır. Bu çalışmada, T. vulgaris'in ana bileşenlerinin anti-şiddetli akut solunum sendromu koronavirüs 2 potansiyeli in silico olarak araştırılmıştır. Timol ve karvakrol, T. vulgaris bitkisinin uçucu yağının ana bileşenleridir. Kekik esansiyel yağının ana bileşenlerinin SARS CoV-2 ana proteaz ve Omicron varyantı Spike proteini üzerindeki etkilerini moleküler yerleştirme çalışmaları kullanılarak incelenmiştir. Ayrıca bu iki bileşiğin adsorpsiyon, dağılım, metabolizma, absorpsiyon ve toksik (ADMET) özelliklerini çevrimiçi veritabanlarının yardımıyla incelenmiştir. Timol ve karvakrol, şiddetli akut solunum sendromu koronavirüs 2'nin Omicron varyantının spike proteinine, ana proteaz enzimine kıyasla güçlü bir bağlanma afinitesine sahiptir. Bileşikler, hedef proteinler ile elektrostatik, hidrojen bağı ve hidrofobik etkileşimlerle bağlanmaktadır. Karvakrol bileşiğinin hedef proteinlerle olan etkileşimleri yapı-aktivite ilişkisi açısından değerlendirildiğinde daha umut verici bulgular göstermektedir.

Project Number

-

References

  • Alp, M & Alp, A.S. (2019). Medisinal Kimyaya Kısa Bir Giriş (1st ed.). Akademisyen Kitabevi.
  • Amirghofran, Z., Ahmadi, H., Karimi, M. H. (2012). Immunomodulatory Activity of the Water Extract of Thymus vulgaris, Thymus daenensis, and Zataria multiflora on Dendritic Cells and T Cells Responses. Journal of Immunoassay and Immunochemistry, 33(4), 388–402. https://doi.org/10.1080/15321819.2012.655822.
  • Banerjee, P., Eckert, A. O., Schrey, A. K., Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46, W257–W263. https://doi.org/10.1093/nar/gky318.
  • Bank, R. P. D. RCSB PDB - 7T9J: Cryo-EM structure of the SARS-CoV-2 Omicron spike protein. Retrieved July 25, 2022, from https://www.rcsb.org/structure/7T9J.
  • BIOVIA, Dassault Systèmes, (2021). BIOVA Discovery Studio Visualizer 2021, v21.1.0.20298, San Diego: Dassault Systèmes,
  • Catella, C., Camero, M., Lucente, M.S., Fracchiolla, G., Sblano, S., Tempesta, M., Martella, V., Buonavoglia, C., Lanave, G. (2021). Virucidal and antiviral effects of Thymus vulgaris essential oil on feline coronavirus, Research in Veterinary Science, 137, 44-47. https://doi.org/10.1016/j.rvsc.2021.04.024.
  • Narkhede R. R., Cheke R. S., Ambhore J. P., Shinde S. D., (2020). The Molecular Docking Study of Potential Drug Candidates Showing Anti-COVID-19 Activity by Exploring of Therapeutic Targets of SARS-CoV-2. Eurasian Journal of Medicine and Oncology. 4(3), 185-195.| DOI: 10.14744/ejmo.2020.31503.
  • Daina, A., Michielin, O., Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717.
  • Daoud, S., Alabed, S. J., Dahabiyeh, L. A. (2021). Identification of potential COVID-19 main protease inhibitors using structure-based pharmacophore approach, molecular docking and repurposing studies. Acta Pharmaceutica, 71(2), 163–174. https://doi.org/10.2478/acph-2021-0016.
  • Fakhar, Z., Khan, S., AlOmar, S. Y., Alkhuriji, A., Ahmad, A. (2021). ABBV-744 as a potential inhibitor of SARS-CoV-2 main protease enzyme against COVID-19. Scientific Reports, 11(1), 234. https://doi.org/10.1038/s41598-020-79918-3.
  • Hadidi, S. (n.d.). Evaluation of the inhibitory activities of thyme compounds against corona- virus disease-19 (COVID-19) by molecular docking and molecular dynamic simulation. Trends in Pharmaceutical Sciences, 8(2), 95-106.
  • Ipek, E., Zeytinoglu, H., Okay, S., Tuylu, B. A., Kurkcuoglu, M., Baser, K. H. C. (2005). Genotoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella/microsomal test. Food Chemistry, 93(3), 551–556. https://doi.org/10.1016/j.foodchem.2004.12.034
  • Jain, S., Potschka, H., Chandra, P. P., Tripathi, M., Vohora, D. (2021). Management of COVID-19 in patients with seizures: Mechanisms of action of potential COVID-19 drug treatments and consideration for potential drug-drug interactions with anti-seizure medications. Epilepsy Research, 174, 106675. https://doi.org/10.1016/j.eplepsyres.2021.106675.
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Parmar, G., Shah, A., Shah, S., Seth, A. K. (2022). Identification of bioactive phytoconstituents from the plant euphorbia hirta as potential inhibitor of sars-cov-2: An in-silico approach. Biointerface Research in Applied Chemistry, 12(2), 1385–1396.
  • Sampangi-Ramaiah, M. H., Vishwakarma, R., Shaanker, R. U. (2020). Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Current Science, 118(7), 1087-1092.
  • Sardari, S., Mobaiend, A., Ghassemifard, L., Kamali, K., Khavasi, N. (2021). Therapeutic Effect of Thyme (Thymus Vulgaris) Essential Oil on Patients with COVID19: A Randomized Clinical Trial. Journal of Advances in Medical and Biomedical Research, 29(133), 83-91.
  • Singh, S., Florez, H. (2020). Coronavirus disease 2019 drug discovery through molecular docking. F1000Research, 9, 502. https://doi.org/10.12688/f1000research.24218.1
  • Trott, O., Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
There are 19 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Articles
Authors

Füreya Elif Öztürkkan 0000-0001-6376-4161

Giray Buğra Akbaba 0000-0002-1413-9498

Pinar Aksu Kılıçle 0000-0002-3567-5775

Project Number -
Early Pub Date September 10, 2024
Publication Date September 15, 2024
Published in Issue Year 2024

Cite

APA Öztürkkan, F. E., Akbaba, G. B., & Aksu Kılıçle, P. (2024). In silico Investigation of the Interactions of Thymol and Carvacrol on the Spike Protein of Omicron Variant and MPro Enzyme of Coronavirus. Karadeniz Fen Bilimleri Dergisi, 14(3), 997-1005. https://doi.org/10.31466/kfbd.1338012