Research Article
BibTex RIS Cite

Bazı Dielektrik Malzemelerin Gama Işını Zırhlama Parametrelerinin Belirlenmesi Üzerine Deneysel Bir Çalışma

Year 2024, , 88 - 100, 15.03.2024
https://doi.org/10.31466/kfbd.1351288

Abstract

Bu çalışmada, bazı dielektrik malzemelerin (kehribar, pleksiglas, organik cam, kuvars, bakalit, NaCl, porselen ve mermer) transmisyon faktörleri (TF), lineer soğurma katsayıları (μ), kütle soğurma katsayıları (μ⁄ρ), ortalama serbest yol ("λ" ), radyasyondan korunma verimliliği (RPE), yarı kalınlık değeri (HVL) ve onda bir kalınlık değeri (TVL) ölçülmüştür. Soğurma ölçümü EDXRFS (Enerji Ayrımlı X-ışını Flöresans Spektrometresi) ile yapılmıştır. Çalışmanın amacı, teknolojik öneme sahip bu dielektrik malzemeler üzerinde yapılacak ölçümler ve hesaplamalar sayesinde yeni kullanım alanları oluşturulmasıdır. Elde edilen sonuçlara göre kehribar en iyi gama ışını zırhlama malzemesiyken, kuvars gama ışını zırhlaması için uygun değildir.

References

  • Akça, B., Erzeneoğlu, S. Z. (2014). The Mass Attenuation Coefficients, Electronic, Atomic, and Molecular Cross Sections, Effective Atomic Numbers, and Electron Densities for Compounds of Some Biomedically Important Elements at 59.5 keV. Science and Technology of Nuclear Installations, 2014, 901465.
  • Akça, B., Ulusoy, Ö., Erzeneoğlu, S. Z. (2022). Total Mass Attenuation Coefficients, Total Photon Interaction Cross Sections, Effective Atomic Numbers, and Effective Electron Densities for Some Construction Materials Available in Turkey. Arab J Sci Eng, 47, 7479–7486.
  • Abdel-Rahman, M. A., Badawi, E. A., Abdel-Hady, Y. L., Kamel, N. (2000) Effect of sample thickness on the measured mass attenuation coefficients of some compounds and elements for 59.54, 661.6 and 1332.5 keV γ-rays. Nucl Instrum Methods Phys Res A, 447, 432–436.
  • Abualroos, N. J., Khatijah, A. Y. K. A., Rafidah, Z. R. (2023). Radiation attenuation effectiveness of polymer-based radiation shielding materials for gamma radiation. Radiation Physics and Chemistry, 222, 11070.
  • Abouhaswa, A. S., El-Mallawany, R., Ramma, Y. S. (2020). Direct influence of La on structure, optical, and gamma-ray shielding properties of lead borate glasses. Radiation Physics and Chemistry, 177, 109085.
  • Ali, A. M., Sayyed, M. I., Somaily, H. H., Algarni, H, Rashad, M., Alshehri, A. M., Rammah, S. (2020). Electronic polarizability, dielectric, and gamma-ray shielding features of PbO–P2O5–Na2O–Al2O3 glasses doped with MoO3. J Mater Sci: Mater Electron, 31, 22075–22084.
  • Büyükyıldız, M. A., Kılıç, D., Yılmaz, D. (2020). White and some colored marbles as alternative radiation shielding materials for applications. Radiation Effects and Defects in Solids, 175(7-8), 657-671.
  • Donya, H., & Sulami S. (2019). Photon shielding characterization of a modified titania-bismuth-borotellurite glass system for medical applications. Journal of the Korean Physıcal Socıety, 75(11), 871-877.
  • El-Khayatt, A. M., Ali, A. M., Vishwanath, P. S. (2014). Photon attenuation coefficients of Heavy-Metal Oxide glasses by MCNP code, XCOM program, and experimental data: A comparison study. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 735, 207-212.
  • Harjinder, S. M., Brar, G. S., Mudahar, G. S. (2016). Gamma-ray shielding effectiveness of novel light-weight clay-flyash bricks. Radiation Physics and Chemistry, 127, 97-101.
  • Higgins, M. C. M., Radeliffe, N. A., Toro-Gonzalez, M., Rojas, J. V. (2019). Gamma-ray attenuation of hafnium dioxide- and tungsten trioxide-epoxy resin composites. Journal of Radıoanalytıcal and Nuclear Chemıstry 322(2), 707-716.
  • Kurtuluş, R., Kavas, T., Mahmoud, K., A., Akkurt, I., Gunoglu, K., Sayyed, M. I. (2021). The effect of Nb2O5 on waste soda-lime glass in gamma-rays shielding applications. J Mater Sci: Mater Electron. 32, 4903–4915.
  • Kılıç, S. (2011). Takılarda Kullanılan Organik ve Mineral Taşların İnsan Üzerine Etkileri. Karadeniz Araştırmaları, 29, 119-132.
  • Mariselvam, K. (2021). Gamma-ray interactions with ytterbium ions doped BLFB glasses for shielding applications. Optic- International Journal for Light and Electron Optics, 240, 166808.
  • Manoj, K. G., Dhaliwal, A. S., Kahlon, K. S. (2015). Effect of external magnetic field on attenuation coefficient for magnetic substances. Applied Radiation and Isotopes, 95, 188–192.
  • Özkan, Z., Gökmen, U., Ocak, S. B. (2023). Analyses of gamma and neutron attenuation properties of the AA6082 composite material doped with boron carbide (B4C). Radiation Physics and Chemistry, 206, 110810.
  • Öztürk, M., Sevim, U. K., Akgöl, O., Ünal, E., Karaaslan, M. (2020). Investigation of the mechanic, electromagnetic characteristics, and shielding effectiveness of concrete with boron ores and boron containing wastes. Construction and Building Materials 252.
  • Pomaro, B., Gramegna, F., Cherubini, R., De Nadal, V., Valentina, S., Faleschini, F. (2019). Gamma-ray shielding properties of heavyweight concrete with Electric Arc Furnace slag as aggregate: An experimental and numerical study. Construction and Building Materials, 200, 188-197.
  • Ragazzi, E. (2016). Amber, a Stone of Sun for Ancient Medicines. Acta medico-historica Rigensia X:208-234.
  • Reda, S. M. (2016). Gamma-ray shielding by a new combination of aluminum, iron, copper, and lead using MCNP5. Arab Journal of Nuclear Sciences and Applications, 49(4), 211-217.
  • Shams Issa, A. M. (2016). Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiation Physics and Chemistry, 120, 33-3.
  • Shivaramu, Vijayakumar, R., Rajasekaran, L., Ramamurthy, N. (2001). Effective atomic numbers for photon energy absorption of some low-Z substances of dosimetric interest. Radiation Physics and Chemistry, 62, 371–377.
  • Singh, S. Kumar, A., Devinder, S., Kulwant, S. T., Gurmel, S. M. (2008). MudaharBarium–borate–flyash glasses: As radiation shielding materials. Nucl. Instrum. Methods Phys. Res. B, 266, 140-146.
  • Subedi, B. & Lamichhane, T. R. (2023). Radiation shielding properties of low-density Ti-based bulk metallic glass composites: a computational study. Physica Scripta, 98(3).
  • Turhan, M. F., Akman, F., Polat, H., Kaçal, M. R., Demirkol, I, (2020). Gamma-ray attenuation behaviors of hematite doped polymer composites. Progress in Nuclear Energy, 129, 103504.
  • Tüysüz, B., & Dizman, S. (2022). Bazı Seramiklerin Düşük Enerjili Gamalar için Radyasyon Soğurma Kapasitelerinin Belirlenmesi. El-Cezerî Fen ve Mühendislik Dergisi, 9(2), 522-531.

An Experimental Examination on the Determination of γ-ray Shielding Parameters of Some Dielectric Materials

Year 2024, , 88 - 100, 15.03.2024
https://doi.org/10.31466/kfbd.1351288

Abstract

In this study, γ-ray shielding parameters (transmission factors (TF), linear attenuation coefficients (μ), mass attenuation coefficients (μ⁄ρ), mean free path ("λ" ), radiation protection efficiency (RPE), half-value layer (HVL), and tenth value layer (TVL)) were measured of some dielectric materials (amber, plexiglass, organic glass, quartz, bakelite, NaCl, porcelain, and marble). The absorption measurements were done by EDXRFS (Energy Dispersive X-ray Fluorescence Spectrometer). The study aims to create new areas of use thanks to the measurements and calculations to be made on these technologically important dielectric materials. According to the results obtained, amber is the best gamma ray shielding material, while quartz is not suitable for gamma ray shielding.

References

  • Akça, B., Erzeneoğlu, S. Z. (2014). The Mass Attenuation Coefficients, Electronic, Atomic, and Molecular Cross Sections, Effective Atomic Numbers, and Electron Densities for Compounds of Some Biomedically Important Elements at 59.5 keV. Science and Technology of Nuclear Installations, 2014, 901465.
  • Akça, B., Ulusoy, Ö., Erzeneoğlu, S. Z. (2022). Total Mass Attenuation Coefficients, Total Photon Interaction Cross Sections, Effective Atomic Numbers, and Effective Electron Densities for Some Construction Materials Available in Turkey. Arab J Sci Eng, 47, 7479–7486.
  • Abdel-Rahman, M. A., Badawi, E. A., Abdel-Hady, Y. L., Kamel, N. (2000) Effect of sample thickness on the measured mass attenuation coefficients of some compounds and elements for 59.54, 661.6 and 1332.5 keV γ-rays. Nucl Instrum Methods Phys Res A, 447, 432–436.
  • Abualroos, N. J., Khatijah, A. Y. K. A., Rafidah, Z. R. (2023). Radiation attenuation effectiveness of polymer-based radiation shielding materials for gamma radiation. Radiation Physics and Chemistry, 222, 11070.
  • Abouhaswa, A. S., El-Mallawany, R., Ramma, Y. S. (2020). Direct influence of La on structure, optical, and gamma-ray shielding properties of lead borate glasses. Radiation Physics and Chemistry, 177, 109085.
  • Ali, A. M., Sayyed, M. I., Somaily, H. H., Algarni, H, Rashad, M., Alshehri, A. M., Rammah, S. (2020). Electronic polarizability, dielectric, and gamma-ray shielding features of PbO–P2O5–Na2O–Al2O3 glasses doped with MoO3. J Mater Sci: Mater Electron, 31, 22075–22084.
  • Büyükyıldız, M. A., Kılıç, D., Yılmaz, D. (2020). White and some colored marbles as alternative radiation shielding materials for applications. Radiation Effects and Defects in Solids, 175(7-8), 657-671.
  • Donya, H., & Sulami S. (2019). Photon shielding characterization of a modified titania-bismuth-borotellurite glass system for medical applications. Journal of the Korean Physıcal Socıety, 75(11), 871-877.
  • El-Khayatt, A. M., Ali, A. M., Vishwanath, P. S. (2014). Photon attenuation coefficients of Heavy-Metal Oxide glasses by MCNP code, XCOM program, and experimental data: A comparison study. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 735, 207-212.
  • Harjinder, S. M., Brar, G. S., Mudahar, G. S. (2016). Gamma-ray shielding effectiveness of novel light-weight clay-flyash bricks. Radiation Physics and Chemistry, 127, 97-101.
  • Higgins, M. C. M., Radeliffe, N. A., Toro-Gonzalez, M., Rojas, J. V. (2019). Gamma-ray attenuation of hafnium dioxide- and tungsten trioxide-epoxy resin composites. Journal of Radıoanalytıcal and Nuclear Chemıstry 322(2), 707-716.
  • Kurtuluş, R., Kavas, T., Mahmoud, K., A., Akkurt, I., Gunoglu, K., Sayyed, M. I. (2021). The effect of Nb2O5 on waste soda-lime glass in gamma-rays shielding applications. J Mater Sci: Mater Electron. 32, 4903–4915.
  • Kılıç, S. (2011). Takılarda Kullanılan Organik ve Mineral Taşların İnsan Üzerine Etkileri. Karadeniz Araştırmaları, 29, 119-132.
  • Mariselvam, K. (2021). Gamma-ray interactions with ytterbium ions doped BLFB glasses for shielding applications. Optic- International Journal for Light and Electron Optics, 240, 166808.
  • Manoj, K. G., Dhaliwal, A. S., Kahlon, K. S. (2015). Effect of external magnetic field on attenuation coefficient for magnetic substances. Applied Radiation and Isotopes, 95, 188–192.
  • Özkan, Z., Gökmen, U., Ocak, S. B. (2023). Analyses of gamma and neutron attenuation properties of the AA6082 composite material doped with boron carbide (B4C). Radiation Physics and Chemistry, 206, 110810.
  • Öztürk, M., Sevim, U. K., Akgöl, O., Ünal, E., Karaaslan, M. (2020). Investigation of the mechanic, electromagnetic characteristics, and shielding effectiveness of concrete with boron ores and boron containing wastes. Construction and Building Materials 252.
  • Pomaro, B., Gramegna, F., Cherubini, R., De Nadal, V., Valentina, S., Faleschini, F. (2019). Gamma-ray shielding properties of heavyweight concrete with Electric Arc Furnace slag as aggregate: An experimental and numerical study. Construction and Building Materials, 200, 188-197.
  • Ragazzi, E. (2016). Amber, a Stone of Sun for Ancient Medicines. Acta medico-historica Rigensia X:208-234.
  • Reda, S. M. (2016). Gamma-ray shielding by a new combination of aluminum, iron, copper, and lead using MCNP5. Arab Journal of Nuclear Sciences and Applications, 49(4), 211-217.
  • Shams Issa, A. M. (2016). Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiation Physics and Chemistry, 120, 33-3.
  • Shivaramu, Vijayakumar, R., Rajasekaran, L., Ramamurthy, N. (2001). Effective atomic numbers for photon energy absorption of some low-Z substances of dosimetric interest. Radiation Physics and Chemistry, 62, 371–377.
  • Singh, S. Kumar, A., Devinder, S., Kulwant, S. T., Gurmel, S. M. (2008). MudaharBarium–borate–flyash glasses: As radiation shielding materials. Nucl. Instrum. Methods Phys. Res. B, 266, 140-146.
  • Subedi, B. & Lamichhane, T. R. (2023). Radiation shielding properties of low-density Ti-based bulk metallic glass composites: a computational study. Physica Scripta, 98(3).
  • Turhan, M. F., Akman, F., Polat, H., Kaçal, M. R., Demirkol, I, (2020). Gamma-ray attenuation behaviors of hematite doped polymer composites. Progress in Nuclear Energy, 129, 103504.
  • Tüysüz, B., & Dizman, S. (2022). Bazı Seramiklerin Düşük Enerjili Gamalar için Radyasyon Soğurma Kapasitelerinin Belirlenmesi. El-Cezerî Fen ve Mühendislik Dergisi, 9(2), 522-531.
There are 26 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Articles
Authors

Salih Zeki Erzeneoğlu 0000-0002-0890-6099

Burcu Akça 0000-0003-2399-5971

Sevil Gasimova Yeniçeri 0000-0001-8512-6902

Publication Date March 15, 2024
Published in Issue Year 2024

Cite

APA Erzeneoğlu, S. Z., Akça, B., & Gasimova Yeniçeri, S. (2024). An Experimental Examination on the Determination of γ-ray Shielding Parameters of Some Dielectric Materials. Karadeniz Fen Bilimleri Dergisi, 14(1), 88-100. https://doi.org/10.31466/kfbd.1351288