Research Article
BibTex RIS Cite

Aronia prunifolia Yaprağı Ekstresi Kullanılarak Gümüş ve Demir Oksit Nanopartiküllerinin Biyojenik Sentezi ve Patojenik Funguslara Karşı İnhibitör Etkisi

Year 2024, , 589 - 604, 18.06.2024
https://doi.org/10.31466/kfbd.1399112

Abstract

Çevre ve yenilenebilir kaynakların bolluğu nedeniyle, metalik nanopartiküller oluşturmak için bitki özlerinden yararlanmak, kimyasal ve fiziksel yöntemlere umut verici bir alternatif haline geldi. Çok sayıda çalışma, gümüş (AgNP'ler) ve demir oksit (Fe2O3NP'ler) nanopartiküllerinin patojenik funguslara karşı önleyici etkiler olduğunu göstermiştir. Bu çalışmada Aronia prunifolia'nın yaprak ekstraktı kullanılarak biyojenik AgNP'ler ve FeNP'ler üretilerek yaprak ekstraktı ve nanopartiküllerin patojenik funguslar üzerindeki etkileri gösterilmiştir. Nanopartiküller UV-Vis, X-ışını kırınımı, EDX spektrumu ve SEM teknikleriyle karakterize edilmiştir. Nanosentez için kullanılan yaprak ekstraktları, gümüş için dörtgen, beşgen ve altıgen şekiller (15-50 nm) ve demir oksit için küresel morfoloji (16-60 nm) sergileyen, farklı renk değişimleri ve absorpsiyon zirveleri olan gümüş ve demir oksit nanopartikülleri verdi. Nanopartiküllerinin Aspergillus fumigatus, Rhizoctonia solani Ag4 HgII ve Aspergillus flavus'a karşı antifungal aktivitesi, iyi bir difüzyon yöntemi kullanılarak incelenmiştir. 10 ila 30 µg/ml konsantrasyonlarda AgNP'ler için 12.5 ila 35.0 mm ve FeNP'ler için 7.1 ila 17.1 mm arasında değişen inhibisyon bölgeleri, AgNP'lerin FeNP'lere göre üstün inhibitör potansiyelini ortaya koydu. Bu çalışmada, yeşil AgNP'ler ve FeNP'nin patojen fungus izolüne karşı önleyici aktivitesini karşılaştırarak literatürdeki bir boşluğu doldurmayı umuyoruz. Kaplanmış nanopartiküller fungus enfeksiyonlarının tedavisinde çok faydalı olabilir; bu, A. prunifolia yapraklarından nanopartiküllerin üretimine yönelik ilk araştırma olacak.

References

  • Abdeen, S., Isaac, R. R., Geo, S., Sornalekshmi, S., Rose, A., & Praseetha, P. K. (2013). Evaluation of Antimicrobial Activity of Biosynthesized Iron and Silver Nanoparticles Using the Fungi Fusarium Oxysporum and Actinomycetes sp. on Human Pathogens. Nano Biomedicine & Engineering, 5(1).
  • Abou El-Nour, K. M., Eftaiha, A. A., Al-Warthan, A., & Ammar, R. A. (2010). Synthesis and applications of silver nanoparticles. Arabian journal of chemistry, 3(3), 135-140.
  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and surfaces B: Biointerfaces, 28(4), 313-318.
  • Akhtar, M. S., Panwar, J., & Yun, Y. S. (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry & Engineering, 1(6), 591-602.
  • Al-Otibi, F., Al-Ahaidib, R. A., Alharbi, R. I., Al-Otaibi, R. M., & Albasher, G. (2020). Antimicrobial potential of biosynthesized silver nanoparticles by Aaronsohnia factorovskyi extract. Molecules, 26(1), 130.
  • Andres-Lacueva, C., Shukitt-Hale, B., Galli, R. L., Jauregui, O., Lamuela-Raventos, R. M., & Joseph, J. A. (2005). Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutritional neuroscience, 8(2), 111-120.
  • Ankamwar, B., Lai, T. C., Huang, J. H., Liu, R. S., Hsiao, M., Chen, C. H., & Hwu, Y. K. (2010). Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology, 21(7), 075102.
  • Ankanna, S., & Savithramma, N. (2011). Biological synthesis of silver nanoparticles by using stem of Shorea tumbuggaia Roxb. and its antimicrobial efficacy. Asian J Pharm Clin Res, 4(2), 137-141.
  • Aseel, D. G., Behiry, S. I., & Abdelkhalek, A. (2023). Green and Cost-Effective Nanomaterials Synthesis from Desert Plants and Their Applications. In Secondary Metabolites Based Green Synthesis of Nanomaterials and Their Applications (pp. 327-357). Singapore: Springer Nature Singapore.
  • Balashanmugam, P., Balakumaran, M. D., Murugan, R., Dhanapal, K., & Kalaichelvan, P. T. (2016). Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiological Research, 192, 52-64.
  • Charbgoo, F., Ahmad, M. B., & Darroudi, M. (2017). Cerium oxide nanoparticles: green synthesis and biological applications. International journal of nanomedicine, 1401-1413.
  • Cheeseman, S., Christofferson, A. J., Kariuki, R., Cozzolino, D., Daeneke, T., Crawford, R. J., ... & Elbourne, A. (2020). Antimicrobial metal nanomaterials: from passive to stimuli‐activated applications. Advanced Science, 7(10), 1902913.‏
  • Chen, L., Xin, X., Yuan, Q., Su, D., & Liu, W. (2014). Phytochemical properties and antioxidant capacities of various colored berries. Journal of the Science of Food and Agriculture, 94(2), 180-188.
  • Cuong, H. N., Pansambal, S., Ghotekar, S., Oza, R., Hai, N. T. T., Viet, N. M., & Nguyen, V. H. (2022). New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environmental Research, 203, 111858.
  • Dawoud, T. M., Yassin, M. A., El-Samawaty, A. R. M., & Elgorban, A. M. (2021). Silver nanoparticles synthesized by Nigrospora oryzae showed antifungal activity. Saudi Journal of Biological Sciences, 28(3), 1847-1852.
  • Demirbas, A., Welt, B. A., & Ocsoy, I. (2016). Biosynthesis of red cabbage extract directed Ag NPs and their effect on the loss of antioxidant activity. Materials Letters, 179, 20-23.
  • Devatha, C. P., Thalla, A. K., & Katte, S. Y. (2016). Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. Journal of cleaner production, 139, 1425-1435.
  • Dubas, S. T., Kumlangdudsana, P., & Potiyaraj, P. (2006). Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 289(1-3), 105-109.
  • Faisal, N., & Kumar, K. (2017). Polymer and metal nanocomposites in biomedical applications. Biointerface Research in Applied Chemistry, 7(6), 2286-2294.
  • Golipour, F., Habibipour, R., & Moradihaghgou, L. (2019). Investigating effects of superparamagnetic iron oxide nanoparticles on Candida albicans biofilm formation. Medical Laboratory Journal, 13(6), 44-50.‏
  • Gong, J., & Lin, X. (2003). Facilitated electron transfer of hemoglobin embedded in nanosized Fe3O4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid. Microchemical journal, 75(1), 51-57.
  • Goswami, M., Baruah, D., & Das, A. M. (2018). Green synthesis of silver nanoparticles supported on cellulose and their catalytic application in the scavenging of organic dyes. New Journal of Chemistry, 42(13), 10868-10878.
  • Hai, N. D., Dat, N. M., Thinh, D. B., Nam, N. T. H., Dat, N. T., Phong, M. T., & Hieu, N. H. (2022). Phytosynthesis of silver nanoparticles using Mangifera indica leaves extract at room temperature: Formation mechanism, catalytic reduction, colorimetric sensing, and antimicrobial activity. Colloids and Surfaces B: Biointerfaces, 220, 112974.
  • Herlekar, M., Barve, S., & Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles, 2014.
  • Ildiz, N., Baldemir, A., Altinkaynak, C., Özdemir, N., Yilmaz, V., & Ocsoy, I. (2017). Self assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme and Microbial Technology, 102, 60-66.
  • Issa, B., Obaidat, I. M., Albiss, B. A., & Haik, Y. (2013). Magnetic nanoparticles: surface effects and properties related to biomedicine applications. International journal of molecular sciences, 14(11), 21266-21305.
  • Iv, M., Telischak, N., Feng, D., Holdsworth, S. J., Yeom, K. W., & Daldrup-Link, H. E. (2015). Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine, 10(6), 993-1018.
  • Javed, B., Ikram, M., Farooq, F., Sultana, T., Mashwani, Z. U. R., & Raja, N. I. (2021). Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: A mechanistic overview. Applied Microbiology and Biotechnology, 105, 2261-2275.
  • Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., ... & Rao, K. B. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90, 78-84.
  • Kähkönen, M. P., & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycons. Journal of agricultural and food chemistry, 51(3), 628-633.
  • Khalid, M., & El-Sawy, H. S. (2017). Polymeric nanoparticles: Promising platform for drug delivery. International journal of pharmaceutics, 528(1-2), 675-691.
  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908-931.
  • Khan, M. R., & Rizvi, T. F. (2014). Nanotechnology: scope and application in plant disease management. Plant Pathol J, 13(3), 214-231.
  • Khlebtsov, N., & Dykman, L. (2011). Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chemical Society Reviews, 40(3), 1647-1671.
  • Kisimba, K., Krishnan, A., Faya, M., Byanga, K., Kasumbwe, K., Vijayakumar, K., & Prasad, R. (2023). Synthesis of metallic nanoparticles based on green chemistry and their medical biochemical applications: synthesis of metallic nanoparticles. J Renew Mater, 11(6), 2575-2591.
  • Kiwumulo, H. F., Muwonge, H., Ibingira, C., Lubwama, M., Kirabira, J. B., & Ssekitoleko, R. T. (2022). Green synthesis and characterization of iron-oxide nanoparticles using Moringa oleifera: a potential protocol for use in low and middle income countries. BMC Research Notes, 15(1), 1-8.
  • Krishnaraj, C., Ramachandran, R., Mohan, K., & Kalaichelvan, P. T. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93, 95-99.
  • Kuppusamy, P., Yusoff, M. M., Maniam, G. P., & Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report. Saudi Pharmaceutical Journal, 24(4), 473-484.
  • Lee, C., Kim, J. Y., Lee, W. I., Nelson, K. L., Yoon, J., & Sedlak, D. L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental science & technology, 42(13), 4927-4933.
  • Madhavi, V., Prasad, T. N. V. K. V., Reddy, A. V. B., Reddy, B. R., & Madhavi, G. (2013). Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 116, 17-25.
  • Mahmoud, A. A., El-Feky, G. S., Kamel, R., & Awad, G. E. (2011). Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. International journal of pharmaceutics, 413(1-2), 229-236.
  • Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (англоязычная версия), 6(1 (20)), 35-44.
  • Mie, R., Samsudin, M. W., Din, L. B., Ahmad, A., Ibrahim, N., & Adnan, S. N. A. (2014). Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. International journal of nanomedicine, 121-127.
  • Mira, A. K., Yousef, A. S., & Abdullah, A. (2015). Biosynthesis of silver nanoparticles by cyanobacterium Gloeocapsa sp. IJERSTE, 4(9), 60-73.
  • Mohammadlou, M., Maghsoudi, H., & Jafarizadeh-Malmiri, H. J. I. F. R. J. (2016). A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. International Food Research Journal, 23(2), 446.
  • Morozova, O. V. (2021). Silver nanostructures: limited sensitivity of detection, toxicity and anti-inflammation effects. International Journal of Molecular Sciences, 22(18), 9928.
  • Nehra, P., Chauhan, R. P., Garg, N., & Verma, K. (2018). Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. British journal of biomedical science, 75(1), 13-18.
  • Norberto, S., Silva, S., Meireles, M., Faria, A., Pintado, M., & Calhau, C. (2013). Blueberry anthocyanins in health promotion: A metabolic overview. Journal of Functional Foods, 5(4), 1518-1528.
  • Okaiyeto, K., Hoppe, H., & Okoh, A. I. (2021). Plant-based synthesis of silver nanoparticles using aqueous leaf extract of Salvia officinalis: characterization and its antiplasmodial activity. Journal of Cluster Science, 32, 101-109.
  • Perera, S., Bhushan, B., Bandara, R., Rajapakse, G., Rajapakse, S., & Bandara, C. (2013). Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles. Colloids and surfaces A: Physicochemical and engineering aspects, 436, 975-989.
  • Pulit, J., Banach, M., Szczygłowska, R., & Bryk, M. (2013). Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochimica Polonica, 60(4).
  • Raj, S., Mali, S. C., & Trivedi, R. (2018). Green synthesis and characterization of silver nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochemical and biophysical research communications, 503(4), 2814-2819.
  • Raj, S., Singh, H., Trivedi, R., & Soni, V. (2020). Biogenic synthesis of AgNPs employing Terminalia arjuna leaf extract and its efficacy towards catalytic degradation of organic dyes. Scientific reports, 10(1), 9616.
  • Rajakumar, G., & Rahuman, A. A. (2011). Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta tropica, 118(3), 196-203.
  • Reddy, N. J., Vali, D. N., Rani, M., & Rani, S. S. (2014). Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Science and Engineering: C, 34, 115-122.
  • Sahu, M., Yadav, R., & Tiwari, S. (2023). Recent advances in nanotechnology. Int J Nanomater Nanotechnol Nanomed, 9(2), 015-023.
  • Salam, H. A., Rajiv, P., Kamaraj, M., Jagadeeswaran, P., Gunalan, S., & Sivaraj, R. (2012). Plants: green route for nanoparticle synthesis. Int Res J Biol Sci, 1(5), 85-90.
  • Saqib, S., Faryad, S., Afridi, M. I., Arshad, B., Younas, M., Naeem, M., ... & El-Abedin, T. K. Z. (2022). Bimetallic assembled silver nanoparticles impregnated in Aspergillus fumigatus extract damage the bacterial membrane surface and release cellular contents. Coatings, 12(10), 1505.
  • Saxena, A., & Raj, S. (2021). Impact of lockdown during COVID-19 pandemic on the air quality of North Indian cities. Urban Climate, 35, 100754.
  • Saxena, A., Tripathi, R. M., Zafar, F., & Singh, P. (2012). Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Materials letters, 67(1), 91-94.
  • Singh, A., Jain, D., Upadhyay, M. K., Khandelwal, N., & Verma, H. N. (2010). Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Bios, 5(2), 483-489.
  • Singh, H., Raj, S., Kumar, D., Sharma, S., Bhatt, U., Kalaji, H. M., ... & Soni, V. (2021). Tolerance and decolorization potential of duckweed (Lemna gibba) to CI Basic Green 4. Scientific Reports, 11(1), 10889.
  • Sivasankarapillai, V. S., Jose, J., Shanavas, M. S., Marathakam, A., Uddin, M. S., & Mathew, B. (2019). Silicon quantum dots: Promising theranostic probes for the future. Current Drug Targets, 20(12), 1255-1263.
  • Stabryla, L. M., Moncure, P. J., Millstone, J. E., & Gilbertson, L. M. (2023). Particle-Driven Effects at the Bacteria Interface: A Nanosilver Investigation of Particle Shape and Dose Metric. ACS Applied Materials & Interfaces, 15(33), 39027-39038.
  • Stankic, S., Suman, S., Haque, F., & Vidic, J. (2016). Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. Journal of nanobiotechnology, 14(1), 1-20.
  • Sulaiman, G. M., Mohammad, A. A., Abdul-Wahed, H. E., & Ismail, M. M. (2013). Biosynthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Rosmarinus officinalis extract. Dig J Nanomater Biostruct, 8(1), 273-280.
  • Szopa, A., Kokotkiewicz, A., Kubica, P., Banaszczak, P., Wojtanowska-Krośniak, A., Krośniak, M., ... & Ekiert, H. (2017). Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A.× prunifolia and their antioxidant activities. European Food Research and Technology, 243, 1645-1657.
  • Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine, 6(2), 257-262.
  • Tkáciková, L., Kšonžeková, P., Porácová, J., Mariychuk, R., & Eliašová, A. (2013). Antimicrobial properties of anthocyanin extracts prepared from berries by ethanol and acetone extraction. Acta Facult. Stud. Hum. Nat. Univ Prešoviensis, 62, 81-89.
  • Twu, Y. K., Chen, Y. W., & Shih, C. M. (2008). Preparation of silver nanoparticles using chitosan suspensions. Powder Technology, 185(3), 251-257.
  • Wani, A. H., Amin, M., Shahnaz, M., & Shah, M. A. (2012). Antimycotic activity of nanoparticles of MgO, FeO and ZnO on some pathogenic fungi. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 2(4), 59-70.
  • Wani, M. Y., Ganie, N. A., Dar, K. A., Dar, S. Q., Khan, A. H., Khan, N. A., ... & Banerjee, R. (2023). Nanotechnology future in food using carbohydrate macromolecules: A state-of-the-art review. International Journal of Biological Macromolecules, 124350.
  • Yadi, M., Mostafavi, E., Saleh, B., Davaran, S., Aliyeva, I., Khalilov, R., ... & Milani, M. (2018). Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. Artificial cells, nanomedicine, and biotechnology, 46(sup3), 336-343.
  • Youdim, K. A., Martin, A., & Joseph, J. A. (2000). Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radical Biology and Medicine, 29(1), 51-60.
  • Zhang, Y., Vareed, S. K., & Nair, M. G. (2005). Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life sciences, 76(13), 1465-1472.
  • Zhou, H., Fan, T., & Zhang, D. (2011). Biotemplated materials for sustainable energy and environment: current status and challenges. ChemSusChem, 4(10), 1344-1387.

Biogenic Synthesis of Silver and Iron Oxide Nanoparticles Using Aronia prunifolia Leaf Extract and Its Inhibitory Action Against Pathogenic Fungi

Year 2024, , 589 - 604, 18.06.2024
https://doi.org/10.31466/kfbd.1399112

Abstract

Because of the environment and abundant renewable resources, exploiting plant extracts to form metallic nanoparticles has become a promising alternative to chemical and physical methods. Numerous studies have shown that nanoparticles of silver (AgNPs) and iron oxide (Fe2O3NPs) have inhibitory effects against pathogenic fungi. In this study, we used the leaf extract of Aronia prunifolia to generate biogenic AgNPs and FeNPs, aiming to demonstrate the impact of nanoparticles on pathogenic fungi. Nanoparticles are characterized by UV-Vis, X-ray diffraction, EDX spectrum, and SEM techniques. Leaf extracts used for nanosynthesis yielded silver and iron oxide nanoparticles with distinct color changes and absorption peaks, showcasing tetragonal, pentagonal, and hexagonal shapes (15-50 nm) for silver and spherical morphology (16-60 nm) for iron oxide. The antifungal effectiveness of nanoparticles against Aspergillus fumigatus, Rhizoctonia solani Ag4 HgII, and Aspergillus flavus was investigated using a well diffusion method. Inhibition zones, ranging from 12.5 to 35.0 mm for AgNPs and 7.1 to 17.1 mm for FeNPs at concentrations of 10 to 30 µg/ml respectively, demonstrated the superior inhibitory potential of AgNPs over FeNPs. This study aims to address a gap in the literature by examining the inhibitory effects of green AgNPs and FeNPs on pathogenic fungi. Encased nanoparticles can be very useful in treating fungal infections; this will be the first investigation into the production of nanoparticles from A. prunifolia leaves.

References

  • Abdeen, S., Isaac, R. R., Geo, S., Sornalekshmi, S., Rose, A., & Praseetha, P. K. (2013). Evaluation of Antimicrobial Activity of Biosynthesized Iron and Silver Nanoparticles Using the Fungi Fusarium Oxysporum and Actinomycetes sp. on Human Pathogens. Nano Biomedicine & Engineering, 5(1).
  • Abou El-Nour, K. M., Eftaiha, A. A., Al-Warthan, A., & Ammar, R. A. (2010). Synthesis and applications of silver nanoparticles. Arabian journal of chemistry, 3(3), 135-140.
  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and surfaces B: Biointerfaces, 28(4), 313-318.
  • Akhtar, M. S., Panwar, J., & Yun, Y. S. (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry & Engineering, 1(6), 591-602.
  • Al-Otibi, F., Al-Ahaidib, R. A., Alharbi, R. I., Al-Otaibi, R. M., & Albasher, G. (2020). Antimicrobial potential of biosynthesized silver nanoparticles by Aaronsohnia factorovskyi extract. Molecules, 26(1), 130.
  • Andres-Lacueva, C., Shukitt-Hale, B., Galli, R. L., Jauregui, O., Lamuela-Raventos, R. M., & Joseph, J. A. (2005). Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutritional neuroscience, 8(2), 111-120.
  • Ankamwar, B., Lai, T. C., Huang, J. H., Liu, R. S., Hsiao, M., Chen, C. H., & Hwu, Y. K. (2010). Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology, 21(7), 075102.
  • Ankanna, S., & Savithramma, N. (2011). Biological synthesis of silver nanoparticles by using stem of Shorea tumbuggaia Roxb. and its antimicrobial efficacy. Asian J Pharm Clin Res, 4(2), 137-141.
  • Aseel, D. G., Behiry, S. I., & Abdelkhalek, A. (2023). Green and Cost-Effective Nanomaterials Synthesis from Desert Plants and Their Applications. In Secondary Metabolites Based Green Synthesis of Nanomaterials and Their Applications (pp. 327-357). Singapore: Springer Nature Singapore.
  • Balashanmugam, P., Balakumaran, M. D., Murugan, R., Dhanapal, K., & Kalaichelvan, P. T. (2016). Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiological Research, 192, 52-64.
  • Charbgoo, F., Ahmad, M. B., & Darroudi, M. (2017). Cerium oxide nanoparticles: green synthesis and biological applications. International journal of nanomedicine, 1401-1413.
  • Cheeseman, S., Christofferson, A. J., Kariuki, R., Cozzolino, D., Daeneke, T., Crawford, R. J., ... & Elbourne, A. (2020). Antimicrobial metal nanomaterials: from passive to stimuli‐activated applications. Advanced Science, 7(10), 1902913.‏
  • Chen, L., Xin, X., Yuan, Q., Su, D., & Liu, W. (2014). Phytochemical properties and antioxidant capacities of various colored berries. Journal of the Science of Food and Agriculture, 94(2), 180-188.
  • Cuong, H. N., Pansambal, S., Ghotekar, S., Oza, R., Hai, N. T. T., Viet, N. M., & Nguyen, V. H. (2022). New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environmental Research, 203, 111858.
  • Dawoud, T. M., Yassin, M. A., El-Samawaty, A. R. M., & Elgorban, A. M. (2021). Silver nanoparticles synthesized by Nigrospora oryzae showed antifungal activity. Saudi Journal of Biological Sciences, 28(3), 1847-1852.
  • Demirbas, A., Welt, B. A., & Ocsoy, I. (2016). Biosynthesis of red cabbage extract directed Ag NPs and their effect on the loss of antioxidant activity. Materials Letters, 179, 20-23.
  • Devatha, C. P., Thalla, A. K., & Katte, S. Y. (2016). Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. Journal of cleaner production, 139, 1425-1435.
  • Dubas, S. T., Kumlangdudsana, P., & Potiyaraj, P. (2006). Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 289(1-3), 105-109.
  • Faisal, N., & Kumar, K. (2017). Polymer and metal nanocomposites in biomedical applications. Biointerface Research in Applied Chemistry, 7(6), 2286-2294.
  • Golipour, F., Habibipour, R., & Moradihaghgou, L. (2019). Investigating effects of superparamagnetic iron oxide nanoparticles on Candida albicans biofilm formation. Medical Laboratory Journal, 13(6), 44-50.‏
  • Gong, J., & Lin, X. (2003). Facilitated electron transfer of hemoglobin embedded in nanosized Fe3O4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid. Microchemical journal, 75(1), 51-57.
  • Goswami, M., Baruah, D., & Das, A. M. (2018). Green synthesis of silver nanoparticles supported on cellulose and their catalytic application in the scavenging of organic dyes. New Journal of Chemistry, 42(13), 10868-10878.
  • Hai, N. D., Dat, N. M., Thinh, D. B., Nam, N. T. H., Dat, N. T., Phong, M. T., & Hieu, N. H. (2022). Phytosynthesis of silver nanoparticles using Mangifera indica leaves extract at room temperature: Formation mechanism, catalytic reduction, colorimetric sensing, and antimicrobial activity. Colloids and Surfaces B: Biointerfaces, 220, 112974.
  • Herlekar, M., Barve, S., & Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles, 2014.
  • Ildiz, N., Baldemir, A., Altinkaynak, C., Özdemir, N., Yilmaz, V., & Ocsoy, I. (2017). Self assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme and Microbial Technology, 102, 60-66.
  • Issa, B., Obaidat, I. M., Albiss, B. A., & Haik, Y. (2013). Magnetic nanoparticles: surface effects and properties related to biomedicine applications. International journal of molecular sciences, 14(11), 21266-21305.
  • Iv, M., Telischak, N., Feng, D., Holdsworth, S. J., Yeom, K. W., & Daldrup-Link, H. E. (2015). Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine, 10(6), 993-1018.
  • Javed, B., Ikram, M., Farooq, F., Sultana, T., Mashwani, Z. U. R., & Raja, N. I. (2021). Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: A mechanistic overview. Applied Microbiology and Biotechnology, 105, 2261-2275.
  • Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., ... & Rao, K. B. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90, 78-84.
  • Kähkönen, M. P., & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycons. Journal of agricultural and food chemistry, 51(3), 628-633.
  • Khalid, M., & El-Sawy, H. S. (2017). Polymeric nanoparticles: Promising platform for drug delivery. International journal of pharmaceutics, 528(1-2), 675-691.
  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908-931.
  • Khan, M. R., & Rizvi, T. F. (2014). Nanotechnology: scope and application in plant disease management. Plant Pathol J, 13(3), 214-231.
  • Khlebtsov, N., & Dykman, L. (2011). Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chemical Society Reviews, 40(3), 1647-1671.
  • Kisimba, K., Krishnan, A., Faya, M., Byanga, K., Kasumbwe, K., Vijayakumar, K., & Prasad, R. (2023). Synthesis of metallic nanoparticles based on green chemistry and their medical biochemical applications: synthesis of metallic nanoparticles. J Renew Mater, 11(6), 2575-2591.
  • Kiwumulo, H. F., Muwonge, H., Ibingira, C., Lubwama, M., Kirabira, J. B., & Ssekitoleko, R. T. (2022). Green synthesis and characterization of iron-oxide nanoparticles using Moringa oleifera: a potential protocol for use in low and middle income countries. BMC Research Notes, 15(1), 1-8.
  • Krishnaraj, C., Ramachandran, R., Mohan, K., & Kalaichelvan, P. T. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93, 95-99.
  • Kuppusamy, P., Yusoff, M. M., Maniam, G. P., & Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report. Saudi Pharmaceutical Journal, 24(4), 473-484.
  • Lee, C., Kim, J. Y., Lee, W. I., Nelson, K. L., Yoon, J., & Sedlak, D. L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental science & technology, 42(13), 4927-4933.
  • Madhavi, V., Prasad, T. N. V. K. V., Reddy, A. V. B., Reddy, B. R., & Madhavi, G. (2013). Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 116, 17-25.
  • Mahmoud, A. A., El-Feky, G. S., Kamel, R., & Awad, G. E. (2011). Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. International journal of pharmaceutics, 413(1-2), 229-236.
  • Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (англоязычная версия), 6(1 (20)), 35-44.
  • Mie, R., Samsudin, M. W., Din, L. B., Ahmad, A., Ibrahim, N., & Adnan, S. N. A. (2014). Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. International journal of nanomedicine, 121-127.
  • Mira, A. K., Yousef, A. S., & Abdullah, A. (2015). Biosynthesis of silver nanoparticles by cyanobacterium Gloeocapsa sp. IJERSTE, 4(9), 60-73.
  • Mohammadlou, M., Maghsoudi, H., & Jafarizadeh-Malmiri, H. J. I. F. R. J. (2016). A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. International Food Research Journal, 23(2), 446.
  • Morozova, O. V. (2021). Silver nanostructures: limited sensitivity of detection, toxicity and anti-inflammation effects. International Journal of Molecular Sciences, 22(18), 9928.
  • Nehra, P., Chauhan, R. P., Garg, N., & Verma, K. (2018). Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. British journal of biomedical science, 75(1), 13-18.
  • Norberto, S., Silva, S., Meireles, M., Faria, A., Pintado, M., & Calhau, C. (2013). Blueberry anthocyanins in health promotion: A metabolic overview. Journal of Functional Foods, 5(4), 1518-1528.
  • Okaiyeto, K., Hoppe, H., & Okoh, A. I. (2021). Plant-based synthesis of silver nanoparticles using aqueous leaf extract of Salvia officinalis: characterization and its antiplasmodial activity. Journal of Cluster Science, 32, 101-109.
  • Perera, S., Bhushan, B., Bandara, R., Rajapakse, G., Rajapakse, S., & Bandara, C. (2013). Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles. Colloids and surfaces A: Physicochemical and engineering aspects, 436, 975-989.
  • Pulit, J., Banach, M., Szczygłowska, R., & Bryk, M. (2013). Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochimica Polonica, 60(4).
  • Raj, S., Mali, S. C., & Trivedi, R. (2018). Green synthesis and characterization of silver nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochemical and biophysical research communications, 503(4), 2814-2819.
  • Raj, S., Singh, H., Trivedi, R., & Soni, V. (2020). Biogenic synthesis of AgNPs employing Terminalia arjuna leaf extract and its efficacy towards catalytic degradation of organic dyes. Scientific reports, 10(1), 9616.
  • Rajakumar, G., & Rahuman, A. A. (2011). Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta tropica, 118(3), 196-203.
  • Reddy, N. J., Vali, D. N., Rani, M., & Rani, S. S. (2014). Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Science and Engineering: C, 34, 115-122.
  • Sahu, M., Yadav, R., & Tiwari, S. (2023). Recent advances in nanotechnology. Int J Nanomater Nanotechnol Nanomed, 9(2), 015-023.
  • Salam, H. A., Rajiv, P., Kamaraj, M., Jagadeeswaran, P., Gunalan, S., & Sivaraj, R. (2012). Plants: green route for nanoparticle synthesis. Int Res J Biol Sci, 1(5), 85-90.
  • Saqib, S., Faryad, S., Afridi, M. I., Arshad, B., Younas, M., Naeem, M., ... & El-Abedin, T. K. Z. (2022). Bimetallic assembled silver nanoparticles impregnated in Aspergillus fumigatus extract damage the bacterial membrane surface and release cellular contents. Coatings, 12(10), 1505.
  • Saxena, A., & Raj, S. (2021). Impact of lockdown during COVID-19 pandemic on the air quality of North Indian cities. Urban Climate, 35, 100754.
  • Saxena, A., Tripathi, R. M., Zafar, F., & Singh, P. (2012). Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Materials letters, 67(1), 91-94.
  • Singh, A., Jain, D., Upadhyay, M. K., Khandelwal, N., & Verma, H. N. (2010). Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Bios, 5(2), 483-489.
  • Singh, H., Raj, S., Kumar, D., Sharma, S., Bhatt, U., Kalaji, H. M., ... & Soni, V. (2021). Tolerance and decolorization potential of duckweed (Lemna gibba) to CI Basic Green 4. Scientific Reports, 11(1), 10889.
  • Sivasankarapillai, V. S., Jose, J., Shanavas, M. S., Marathakam, A., Uddin, M. S., & Mathew, B. (2019). Silicon quantum dots: Promising theranostic probes for the future. Current Drug Targets, 20(12), 1255-1263.
  • Stabryla, L. M., Moncure, P. J., Millstone, J. E., & Gilbertson, L. M. (2023). Particle-Driven Effects at the Bacteria Interface: A Nanosilver Investigation of Particle Shape and Dose Metric. ACS Applied Materials & Interfaces, 15(33), 39027-39038.
  • Stankic, S., Suman, S., Haque, F., & Vidic, J. (2016). Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. Journal of nanobiotechnology, 14(1), 1-20.
  • Sulaiman, G. M., Mohammad, A. A., Abdul-Wahed, H. E., & Ismail, M. M. (2013). Biosynthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Rosmarinus officinalis extract. Dig J Nanomater Biostruct, 8(1), 273-280.
  • Szopa, A., Kokotkiewicz, A., Kubica, P., Banaszczak, P., Wojtanowska-Krośniak, A., Krośniak, M., ... & Ekiert, H. (2017). Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A.× prunifolia and their antioxidant activities. European Food Research and Technology, 243, 1645-1657.
  • Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine, 6(2), 257-262.
  • Tkáciková, L., Kšonžeková, P., Porácová, J., Mariychuk, R., & Eliašová, A. (2013). Antimicrobial properties of anthocyanin extracts prepared from berries by ethanol and acetone extraction. Acta Facult. Stud. Hum. Nat. Univ Prešoviensis, 62, 81-89.
  • Twu, Y. K., Chen, Y. W., & Shih, C. M. (2008). Preparation of silver nanoparticles using chitosan suspensions. Powder Technology, 185(3), 251-257.
  • Wani, A. H., Amin, M., Shahnaz, M., & Shah, M. A. (2012). Antimycotic activity of nanoparticles of MgO, FeO and ZnO on some pathogenic fungi. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 2(4), 59-70.
  • Wani, M. Y., Ganie, N. A., Dar, K. A., Dar, S. Q., Khan, A. H., Khan, N. A., ... & Banerjee, R. (2023). Nanotechnology future in food using carbohydrate macromolecules: A state-of-the-art review. International Journal of Biological Macromolecules, 124350.
  • Yadi, M., Mostafavi, E., Saleh, B., Davaran, S., Aliyeva, I., Khalilov, R., ... & Milani, M. (2018). Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. Artificial cells, nanomedicine, and biotechnology, 46(sup3), 336-343.
  • Youdim, K. A., Martin, A., & Joseph, J. A. (2000). Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radical Biology and Medicine, 29(1), 51-60.
  • Zhang, Y., Vareed, S. K., & Nair, M. G. (2005). Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life sciences, 76(13), 1465-1472.
  • Zhou, H., Fan, T., & Zhang, D. (2011). Biotemplated materials for sustainable energy and environment: current status and challenges. ChemSusChem, 4(10), 1344-1387.
There are 76 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Luau Mustafa 0000-0001-8197-4357

Ahmed Ismael Naqee Al-bayatı 0000-0001-5411-7448

Dunya Albayati 0009-0006-9152-2323

İbrahim Özkoç 0000-0001-8179-0961

Publication Date June 18, 2024
Submission Date December 1, 2023
Acceptance Date May 29, 2024
Published in Issue Year 2024

Cite

APA Mustafa, L., Al-bayatı, A. I. N., Albayati, D., Özkoç, İ. (2024). Biogenic Synthesis of Silver and Iron Oxide Nanoparticles Using Aronia prunifolia Leaf Extract and Its Inhibitory Action Against Pathogenic Fungi. Karadeniz Fen Bilimleri Dergisi, 14(2), 589-604. https://doi.org/10.31466/kfbd.1399112