Research Article
BibTex RIS Cite

Lithium Recovery from Thermally Activated Carbonate-hosted Clay-type Boron Production Waste with Water Leaching

Year 2024, , 1141 - 1158, 15.09.2024
https://doi.org/10.31466/kfbd.1427540

Abstract

The demand for lithium is increasing due to the production of lithium-ion batteries and its widespread use in the glass, ceramics, pharmaceutical and nuclear industries. It is estimated that the need for lithium will more than double by 2025, especially with the production of electric vehicles and mobile devices. Insufficient available resources to meet the increasing demand necessitates the search for alternative secondary resources. Carbonate-hosted clay-type boron deposits and boron production wastes containing up to 0.65% lithium (Li2O) are potential source to meet the lithium demand. In this study, the leaching conditions of lithium from boron production waste activated thermally were investigated. For this purpose, firstly, the waste was thermally activated at different temperatures ranging from 600-800°C, and the mineralogical and morphological properties of the obtained products were determined. Then, the dissolution of lithium from each activated sample by water leaching was examined. It was determined that dolomite, calcite, montmorillonite, and tobermorite in the waste started to transform into monticellite (CaMgSiO4) from 650°C, and above 700°C the clay structure was degraded and all thermo-chemical transformations were completed. It was observed that melting occurred on the outer surfaces of the particles and accordingly, the pores closed and the particle diameters increased at 750 and 800C. The highest leaching efficiency (85%) was obtained under the optimized conditions (liquid/solid:20, temperature: 50C, contact time: 30 min) from the sample activated at 700°C for 120 min where the particle surface was more porous and rougher and the mineralogical transformations were significantly completed.

Project Number

Fırat Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (FÜBAP) MF.19.35

References

  • Abouzeid, A.-Z. M. (2008). Physical and thermal treatment of phosphate ores — An overview. International Journal of Mineral Processing, 85(4), 59–84. https://doi.org/10.1016/j.minpro.2007.09.001
  • Anik Hasan, Md., Hossain, R., & Sahajwalla, V. (2023). Critical metals (Lithium and Zinc) recovery from battery waste, ores, brine, and steel dust: A review. Process Safety and Environmental Protection, 178, 976–994. https://doi.org/10.1016/j.psep.2023.08.069
  • Bae, H., & Kim, Y. (2021). Technologies of lithium recycling from waste lithium ion batteries: a review. Materials Advances, 2(10), 3234–3250. https://doi.org/10.1039/D1MA00216C
  • Barbosa, L. I., González, J. A., & Ruiz, M. del C. (2015). Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride. Thermochimica Acta, 605, 63–67. https://doi.org/10.1016/j.tca.2015.02.009
  • Bertau, M., Voigt, W., Schneider, A., & Martin, G. (2017). Lithium Recovery from Challenging Deposits: Zinnwaldite and Magnesium‐Rich Salt Lake Brines. ChemBioEng Reviews, 4(6), 360–376. https://doi.org/10.1002/cben.201700011
  • Cabeza, L. F., Gutierrez, A., Barreneche, C., Ushak, S., Fernández, Á. G., Inés Fernádez, A., & Grágeda, M. (2015). Lithium in thermal energy storage: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 42, 1106–1112. https://doi.org/10.1016/j.rser.2014.10.096
  • Celep, O., Yazıcı, E. Y., & Deveci, H. (2022). Cevherlerden ve tuzlu su kaynaklarından lityum kazanımı. Bilimsel Madencilik Dergisi, 61(2), 105–120. https://doi.org/10.30797/madencilik.1010286
  • Crocker, L. & Lien, R. H. (1987). Lithium and its recovery from low-grade nevada clays.
  • Duminuco, P., Messiga, B., & Riccardi, M. P. (1998). Firing process of natural clays. Some microtextures and related phase compositions. Thermochimica Acta, 321(1–2), 185–190. https://doi.org/10.1016/S0040-6031(98)00458-4
  • Ertan, B. (2020). Chlorination roasting process for extraction of valuable metals in boron clays. Pamukkale University Journal of Engineering Sciences, 26(7), 1267–1272. https://doi.org/10.5505/pajes.2019.90836
  • Feng Y.L, Fu X.R, Liu Y. (2018). Study on preparation of lithium carbonate from lithium mica, Light Metal (4) 19–19, 23.
  • Flexer, V., Baspineiro, C. F., & Galli, C. I. (2018). Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of The Total Environment, 639, 1188–1204. https://doi.org/10.1016/j.scitotenv.2018.05.223
  • Fosu, A. Y., Kanari, N., Bartier, D., Vaughan, J., & Chagnes, A. (2022). Novel extraction route of lithium from α-spodumene by dry chlorination. RSC Advances, 12(33), 21468–21481. https://doi.org/10.1039/D2RA03233C
  • Grasso, M. L., González, J. A., & Gennari, F. C. (2022). Lithium extraction from β-LiAlSi2O6 using Na2CO3 through thermal reaction. Minerals Engineering, 176, 107349. https://doi.org/10.1016/j.mineng.2021.107349
  • Gu, H., Guo, T., Wen, H., Luo, C., Cui, Y., Du, S., & Wang, N. (2020). Leaching efficiency of sulfuric acid on selective lithium leachability from bauxitic claystone. Minerals Engineering, 145, 106076. https://doi.org/10.1016/j.mineng.2019.106076
  • Guo, X., Zhang, J., & Tian, Q. (2021). Modeling the potential impact of future lithium recycling on lithium demand in China: A dynamic SFA approach. Renewable and Sustainable Energy Reviews, 137, 110461. https://doi.org/10.1016/j.rser.2020.110461
  • Hariharan, S., Werner, M., Hänchen, M., Zingaretti, D., Baciocchi, R., & Mazzotti, M. (2014). Dissolution Kinetics of Thermally Activated Serpentine for Mineralization at Flue Gas Conditions. Energy Procedia, 63, 5887–5891. https://doi.org/10.1016/j.egypro.2014.11.622
  • Kavanagh, L., Keohane, J., Garcia Cabellos, G., Lloyd, A., & Cleary, J. (2018). Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review. Resources, 7(3), 57. https://doi.org/10.3390/resources7030057
  • Kesler, S. E., Gruber, P. W., Medina, P. A., Keoleian, G. A., Everson, M. P., & Wallington, T. J. (2012). Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews, 48, 55–69. https://doi.org/10.1016/j.oregeorev.2012.05.006
  • Lee, W.-J., Yoon, S., Chon, C.-M., Heo, C.-H., Lee, G.-J., Lee, B.-H., & Murat, C. (2016). Lithium Extraction from Smectitic Clay Occurring in Lithium-bearing Boron Deposits in Turkey. Journal of the Mineralogical Society of Korea, 29(4), 167–177. https://doi.org/10.9727/jmsk.2016.29.4.167
  • Lee, S. (2018). Extraction of lithium from spodumene by alkali fusion (Doctoral dissertation, Department of Energy Systems Engineering, The Graduate School, Seoul National University).
  • Li, H., Eksteen, J., & Kuang, G. (2019). Recovery of lithium from mineral resources: State-of-the-art and perspectives – A review. Hydrometallurgy, 189, 105129. https://doi.org/10.1016/j.hydromet.2019.105129
  • Liu L, Liu L, Zhang L, Wang W, Liu HZ, Cao YH. (2021). Research on recovery of lithium from lepidolite concentrate by chlorination roasting and water leaching. Nonferrous Metals (Extractive Metallurgy) (2), pp. 72-76.
  • Luong, V. T., Kang, D. J., An, J. W., Dao, D. A., Kim, M. J., & Tran, T. (2014). Iron sulphate roasting for extraction of lithium from lepidolite. Hydrometallurgy, 141, 8–16. https://doi.org/10.1016/j.hydromet.2013.09.016
  • Meshram, P., Pandey, B. D., & Mankhand, T. R. (2014). Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. In Hydrometallurgy (Vol. 150, pp. 192–208). Elsevier. https://doi.org/10.1016/j.hydromet.2014.10.012
  • Nogueira, C., Margarido, F., Vieceli, N., Durão, F., & Guimarães, C. (2014). Comparison of processes for lithium recovery from lepidolite by H2SO4 digestion or HCl leaching. In MMME'14-International Conference on Mining, Material and Metallurgical Engineering (pp. 72-1).
  • Obut, A., Aktosun, Z., Girgin, İ., Deveci, H., & Yörükoğlu, A. (2022). Characterization and treatment of clayey waste using a sulfuric acid roasting-water leaching process for the extraction of lithium. Physicochemical Problems of Mineral Processing. https://doi.org/10.37190/ppmp/149635
  • Qiu, S., Sun, T., Zhu, Y., Liu, C., & Yu, J. (2022a). Direct Preparation of Water-Soluble Lithium Salts from α-Spodumene by Roasting with Different Sulfates. Industrial & Engineering Chemistry Research, 62(1), 685-697
  • Rosales, G. D., Resentera, A. C. J., Gonzalez, J. A., Wuilloud, R. G., & Rodriguez, M. H. (2019). Efficient extraction of lithium from β-spodumene by direct roasting with NaF and leaching. Chemical Engineering Research and Design, 150, 320–326. https://doi.org/10.1016/j.cherd.2019.08.009.
  • Su, H., Ju, J., Zhang, J., Yi, A., Lei, Z., Wang, L.& Qi, T. (2020). Lithium recovery from lepidolite roasted with potassium compounds. Minerals Engineering, 145, 106087.
  • Şensöz, H., & Sayın, Z. E. (2023). Recovery of lithium from solid waste clays of Emet colemanite beneficiation plant by roasting and acid leaching method. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi.
  • Swain, B. (2017). Recovery and recycling of lithium: A review. Separation and Purification Technology, 172, 388–403. https://doi.org/10.1016/j.seppur.2016.08.031
  • Wen, H., Luo, C., Du, S., Yu, W., Gu, H., Ling, K., Cui, Y., Li, Y., & Yang, J. (2020). Carbonate-hosted clay-type lithium deposit and its prospecting significance. Chinese Science Bulletin, 65(1), 53–59. https://doi.org/10.1360/TB-2019-0179
  • Zhang, X., Aldahri, T., Tan, X., Liu, W., Zhang, L., & Tang, S. (2020). Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting. Chemical Engineering and Processing-Process Intensification, 147, 107777. https://doi.org/10.1016/j.cep.2019.107777
  • Zhang, Y., Hu, Y., Wang, L., & Sun, W. (2019). Systematic review of lithium extraction from salt-lake brines via precipitation approaches. Minerals Engineering, 139, 105868. https://doi.org/10.1016/j.mineng.2019.105868
  • Zhou, J., & Wen, X. (2014). Extraction of lithium from lepidolite by sulfate process. Inorganic Salt Industry, 46(3), 41-44.
  • Zhu, L., Gu, H., Wen, H., & Yang, Y. (2021). Lithium extraction from clay-type lithium resource using ferric sulfate solutions via an ion-exchange leaching process. Hydrometallurgy, 206, 105759. https://doi.org/10.1016/j.hydromet.2021.105759

Termal Olarak Aktive Edilmiş Karbonat İçerikli Kil Tipi Bor Üretim Atığından Su Liçiyle Lityum Kazanımı

Year 2024, , 1141 - 1158, 15.09.2024
https://doi.org/10.31466/kfbd.1427540

Abstract

Lityum iyon pillerin üretimi ve cam, seramik, ilaç ve nükleer endüstrilerdeki yaygın kullanımı nedeniyle lityuma olan talep her geçen gün artmaktadır. Özellikle elektrikli araç ve mobil cihazların üretimiyle birlikte lityum ihtiyacının 2025 yılına kadar iki kattan fazla artacağı tahmin edilmektedir. Artan talebi karşılamak için mevcut kaynakların yetersiz olması, alternatif ikincil kaynak arayışını zorunlu kılmaktadır. Karbonat içeren kil tipi bor yatakları ve %0.65'e kadar lityum (Li2O) içeren bor üretim atıkları lityum üretimi için potansiyel bir kaynaktır. Bu çalışmada, doğrudan termal olarak aktive edilen bor üretim atıklarından lityumun liç koşulları araştırılmıştır. Bu amaçla; atık 600-800°C arasında değişen farklı sıcaklıklarda ve sürelerde termal olarak aktive edilmiş, elde edilen ürünlerin mineralojik ve morfolojik özellikleri belirlendikten sonra aktive ürünlerden lityumun su ile liçi incelenmiştir. Atık içerisindeki dolomit, kalsit, montmorillonit ve tobermoritin 650°C'den itibaren montisellite (CaMgSiO4) dönüşmeye başladığı ve 700C’nin üzerinde kil yapısının bozulduğu ve tüm dönüşümlerin tamamlandığı belirlenmiştir. 750 ve 800C’de aktive edilen örneklerde yüzeysel erimelerle partikül yüzeylerinde kapanmaların ve partikül çaplarının büyüdüğü tespit edilmiştir. En yüksek liç verimi (%85) optimize edilen şartlar altında (sıvı/katı oranı:20, sıcaklık:50C, temas süresi:30 dk) partikül yüzeyinin daha gözenekli ve pürüzlü olduğu ve mineralojik dönüşümlerin önemli oranda tamamlandığı 700°C'de 120 dk süreyle aktive edilen örnekten elde edilmiştir.

Ethical Statement

Gerekli değil

Supporting Institution

Fırat Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

Fırat Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (FÜBAP) MF.19.35

Thanks

Bu çalışma, Fırat Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (FÜBAP) tarafından MF.19.35 protokol numaralı proje ile desteklenmiştir. Katkılarından dolayı FÜBAP’a teşekkür ederiz.

References

  • Abouzeid, A.-Z. M. (2008). Physical and thermal treatment of phosphate ores — An overview. International Journal of Mineral Processing, 85(4), 59–84. https://doi.org/10.1016/j.minpro.2007.09.001
  • Anik Hasan, Md., Hossain, R., & Sahajwalla, V. (2023). Critical metals (Lithium and Zinc) recovery from battery waste, ores, brine, and steel dust: A review. Process Safety and Environmental Protection, 178, 976–994. https://doi.org/10.1016/j.psep.2023.08.069
  • Bae, H., & Kim, Y. (2021). Technologies of lithium recycling from waste lithium ion batteries: a review. Materials Advances, 2(10), 3234–3250. https://doi.org/10.1039/D1MA00216C
  • Barbosa, L. I., González, J. A., & Ruiz, M. del C. (2015). Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride. Thermochimica Acta, 605, 63–67. https://doi.org/10.1016/j.tca.2015.02.009
  • Bertau, M., Voigt, W., Schneider, A., & Martin, G. (2017). Lithium Recovery from Challenging Deposits: Zinnwaldite and Magnesium‐Rich Salt Lake Brines. ChemBioEng Reviews, 4(6), 360–376. https://doi.org/10.1002/cben.201700011
  • Cabeza, L. F., Gutierrez, A., Barreneche, C., Ushak, S., Fernández, Á. G., Inés Fernádez, A., & Grágeda, M. (2015). Lithium in thermal energy storage: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 42, 1106–1112. https://doi.org/10.1016/j.rser.2014.10.096
  • Celep, O., Yazıcı, E. Y., & Deveci, H. (2022). Cevherlerden ve tuzlu su kaynaklarından lityum kazanımı. Bilimsel Madencilik Dergisi, 61(2), 105–120. https://doi.org/10.30797/madencilik.1010286
  • Crocker, L. & Lien, R. H. (1987). Lithium and its recovery from low-grade nevada clays.
  • Duminuco, P., Messiga, B., & Riccardi, M. P. (1998). Firing process of natural clays. Some microtextures and related phase compositions. Thermochimica Acta, 321(1–2), 185–190. https://doi.org/10.1016/S0040-6031(98)00458-4
  • Ertan, B. (2020). Chlorination roasting process for extraction of valuable metals in boron clays. Pamukkale University Journal of Engineering Sciences, 26(7), 1267–1272. https://doi.org/10.5505/pajes.2019.90836
  • Feng Y.L, Fu X.R, Liu Y. (2018). Study on preparation of lithium carbonate from lithium mica, Light Metal (4) 19–19, 23.
  • Flexer, V., Baspineiro, C. F., & Galli, C. I. (2018). Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of The Total Environment, 639, 1188–1204. https://doi.org/10.1016/j.scitotenv.2018.05.223
  • Fosu, A. Y., Kanari, N., Bartier, D., Vaughan, J., & Chagnes, A. (2022). Novel extraction route of lithium from α-spodumene by dry chlorination. RSC Advances, 12(33), 21468–21481. https://doi.org/10.1039/D2RA03233C
  • Grasso, M. L., González, J. A., & Gennari, F. C. (2022). Lithium extraction from β-LiAlSi2O6 using Na2CO3 through thermal reaction. Minerals Engineering, 176, 107349. https://doi.org/10.1016/j.mineng.2021.107349
  • Gu, H., Guo, T., Wen, H., Luo, C., Cui, Y., Du, S., & Wang, N. (2020). Leaching efficiency of sulfuric acid on selective lithium leachability from bauxitic claystone. Minerals Engineering, 145, 106076. https://doi.org/10.1016/j.mineng.2019.106076
  • Guo, X., Zhang, J., & Tian, Q. (2021). Modeling the potential impact of future lithium recycling on lithium demand in China: A dynamic SFA approach. Renewable and Sustainable Energy Reviews, 137, 110461. https://doi.org/10.1016/j.rser.2020.110461
  • Hariharan, S., Werner, M., Hänchen, M., Zingaretti, D., Baciocchi, R., & Mazzotti, M. (2014). Dissolution Kinetics of Thermally Activated Serpentine for Mineralization at Flue Gas Conditions. Energy Procedia, 63, 5887–5891. https://doi.org/10.1016/j.egypro.2014.11.622
  • Kavanagh, L., Keohane, J., Garcia Cabellos, G., Lloyd, A., & Cleary, J. (2018). Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review. Resources, 7(3), 57. https://doi.org/10.3390/resources7030057
  • Kesler, S. E., Gruber, P. W., Medina, P. A., Keoleian, G. A., Everson, M. P., & Wallington, T. J. (2012). Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews, 48, 55–69. https://doi.org/10.1016/j.oregeorev.2012.05.006
  • Lee, W.-J., Yoon, S., Chon, C.-M., Heo, C.-H., Lee, G.-J., Lee, B.-H., & Murat, C. (2016). Lithium Extraction from Smectitic Clay Occurring in Lithium-bearing Boron Deposits in Turkey. Journal of the Mineralogical Society of Korea, 29(4), 167–177. https://doi.org/10.9727/jmsk.2016.29.4.167
  • Lee, S. (2018). Extraction of lithium from spodumene by alkali fusion (Doctoral dissertation, Department of Energy Systems Engineering, The Graduate School, Seoul National University).
  • Li, H., Eksteen, J., & Kuang, G. (2019). Recovery of lithium from mineral resources: State-of-the-art and perspectives – A review. Hydrometallurgy, 189, 105129. https://doi.org/10.1016/j.hydromet.2019.105129
  • Liu L, Liu L, Zhang L, Wang W, Liu HZ, Cao YH. (2021). Research on recovery of lithium from lepidolite concentrate by chlorination roasting and water leaching. Nonferrous Metals (Extractive Metallurgy) (2), pp. 72-76.
  • Luong, V. T., Kang, D. J., An, J. W., Dao, D. A., Kim, M. J., & Tran, T. (2014). Iron sulphate roasting for extraction of lithium from lepidolite. Hydrometallurgy, 141, 8–16. https://doi.org/10.1016/j.hydromet.2013.09.016
  • Meshram, P., Pandey, B. D., & Mankhand, T. R. (2014). Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. In Hydrometallurgy (Vol. 150, pp. 192–208). Elsevier. https://doi.org/10.1016/j.hydromet.2014.10.012
  • Nogueira, C., Margarido, F., Vieceli, N., Durão, F., & Guimarães, C. (2014). Comparison of processes for lithium recovery from lepidolite by H2SO4 digestion or HCl leaching. In MMME'14-International Conference on Mining, Material and Metallurgical Engineering (pp. 72-1).
  • Obut, A., Aktosun, Z., Girgin, İ., Deveci, H., & Yörükoğlu, A. (2022). Characterization and treatment of clayey waste using a sulfuric acid roasting-water leaching process for the extraction of lithium. Physicochemical Problems of Mineral Processing. https://doi.org/10.37190/ppmp/149635
  • Qiu, S., Sun, T., Zhu, Y., Liu, C., & Yu, J. (2022a). Direct Preparation of Water-Soluble Lithium Salts from α-Spodumene by Roasting with Different Sulfates. Industrial & Engineering Chemistry Research, 62(1), 685-697
  • Rosales, G. D., Resentera, A. C. J., Gonzalez, J. A., Wuilloud, R. G., & Rodriguez, M. H. (2019). Efficient extraction of lithium from β-spodumene by direct roasting with NaF and leaching. Chemical Engineering Research and Design, 150, 320–326. https://doi.org/10.1016/j.cherd.2019.08.009.
  • Su, H., Ju, J., Zhang, J., Yi, A., Lei, Z., Wang, L.& Qi, T. (2020). Lithium recovery from lepidolite roasted with potassium compounds. Minerals Engineering, 145, 106087.
  • Şensöz, H., & Sayın, Z. E. (2023). Recovery of lithium from solid waste clays of Emet colemanite beneficiation plant by roasting and acid leaching method. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi.
  • Swain, B. (2017). Recovery and recycling of lithium: A review. Separation and Purification Technology, 172, 388–403. https://doi.org/10.1016/j.seppur.2016.08.031
  • Wen, H., Luo, C., Du, S., Yu, W., Gu, H., Ling, K., Cui, Y., Li, Y., & Yang, J. (2020). Carbonate-hosted clay-type lithium deposit and its prospecting significance. Chinese Science Bulletin, 65(1), 53–59. https://doi.org/10.1360/TB-2019-0179
  • Zhang, X., Aldahri, T., Tan, X., Liu, W., Zhang, L., & Tang, S. (2020). Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting. Chemical Engineering and Processing-Process Intensification, 147, 107777. https://doi.org/10.1016/j.cep.2019.107777
  • Zhang, Y., Hu, Y., Wang, L., & Sun, W. (2019). Systematic review of lithium extraction from salt-lake brines via precipitation approaches. Minerals Engineering, 139, 105868. https://doi.org/10.1016/j.mineng.2019.105868
  • Zhou, J., & Wen, X. (2014). Extraction of lithium from lepidolite by sulfate process. Inorganic Salt Industry, 46(3), 41-44.
  • Zhu, L., Gu, H., Wen, H., & Yang, Y. (2021). Lithium extraction from clay-type lithium resource using ferric sulfate solutions via an ion-exchange leaching process. Hydrometallurgy, 206, 105759. https://doi.org/10.1016/j.hydromet.2021.105759
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering (Other)
Journal Section Articles
Authors

Merve Aladağ This is me 0000-0002-5072-0167

Mehmet Erdem 0000-0002-3544-7203

Project Number Fırat Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (FÜBAP) MF.19.35
Early Pub Date September 14, 2024
Publication Date September 15, 2024
Submission Date January 29, 2024
Acceptance Date August 14, 2024
Published in Issue Year 2024

Cite

APA Aladağ, M., & Erdem, M. (2024). Termal Olarak Aktive Edilmiş Karbonat İçerikli Kil Tipi Bor Üretim Atığından Su Liçiyle Lityum Kazanımı. Karadeniz Fen Bilimleri Dergisi, 14(3), 1141-1158. https://doi.org/10.31466/kfbd.1427540