Research Article
BibTex RIS Cite

Experimental and Numerical Investigation of the Ballistic Behaviour of Hybrid Armor Plates Containing Armox 500T Armour Steel Against 7.62 mm Full Metal Jacket Bullet

Year 2024, , 1176 - 1191, 15.09.2024
https://doi.org/10.31466/kfbd.1444509

Abstract

In this study, single and multiple hybrid armour structures made of Armox 500T armour steel, Aramid/epoxy laminate composite, and Aluminium honeycomb materials were combined in a variety of configurations to investigate their ballistic performance. Ballistics tests were conducted using 7.62×51mm full metal jacket bullets with a muzzle velocity of 847 ± 10 m/s. The ballistic impact was made by shooting perpendicular to the striking surface of the plate. The ballistic test plates were 250×250 mm and their thickness varied based on the material configuration. Finite element analysis was conducted using the explicit time integration approach in the LS-Dyna software. The experimental study demonstrated that the armour structure consisting of monolithic steel and hybrid did not provide ballistic protection. However, with the hybridization of metal and composite sheets, the amount of energy absorbed from ballistic impact has increased. In addition, all armour combinations included in the research were tested in terms of weight and thickness, with the goal of determining their superiority over each other. The absorbed energy values achieved by hybridization exhibit a greater percentage increase compared to the increase in weight of plates. The finite element analysis results of the armour combinations were compared against experimental data, showing good agreement.

Project Number

2023-020

References

  • Bekci, M. L., Canpolat, B. H., Usta, E., Güler, M. S., and Cora, Ö. N. (2021). Ballistic performances of Ramor 500 and Ramor 550 armor steels at mono and bilayered plate configurations. Engineering Science Technology, an International Journal, 24(4), 990-995.
  • Coufal, V., Křesťan, J., and Vnouček, M. (2022). Ballistic Resistance of ARMOX Advance according to NATO standard AEP-55 STANAG 4569. IOP Conference Series: Materials Science and Engineering,
  • Da Silva, M., Stainer, D., Al-Qureshi, H., and Hotza, D. (2014). Ceramic armors for ballistic applications: a review. Cerâmica, 60, 323-331. https://doi.org/10.1590/S0366-69132014000300003
  • De Oliveira Braga, F., Da Luz, F. S., Monteiro, S. N., and Lima Jr, É. P. (2018). Effect of the impact geometry in the ballistic trauma absorption of a ceramic multilayered armor system. Journal of materials research technology, 7(4), 554-560. https://doi.org/10.1016/j.jmrt.2018.06.019
  • Garašić, I., Jurica, M., Iljkić, D., and Barišić, A. (2019). Determination of ballistic properties on ARMOX 500T steel welded joint. Engineering Review: Međunarodni časopis namijenjen publiciranju originalnih istraživanja s aspekta analize konstrukcija, materijala i novih tehnologija u području strojarstva, brodogradnje, temeljnih tehničkih znanosti, elektrotehnike, računarstva i građevinarstva, 39(2), 186-196.
  • Göçmen, Y., Erdogan, C., and Yalçinkaya, T. (2023). A numerical ballistic performance investigation of Armox 500T steel through ductile damage models. Engineering Fracture Mechanics, 292, 109658.
  • Gunes, R., Arslan, K., Apalak, M. K., and Reddy, J. N. (2019). Ballistic performance of honeycomb sandwich structures reinforced by functionally graded face plates. Journal of Sandwich Structures & Materials, 21(1), 211-229. https://doi.org/10.1177/109963621668946
  • Hub, J., and Komenda, J. (2009). Ballistic's Resistance of Steel Plate Hardox upon Impact of Non Penetrating Projectiles. Advances in Military Technology, 4(2), 79-91.
  • Iqbal, M. A., Senthil, K., Sharma, P., and Gupta, N. (2016). An investigation of the constitutive behavior of Armox 500T steel and armor piercing incendiary projectile material. International Journal of Impact Engineering, 96, 146-164.
  • Kędzierski, P., Morka, A., Sławiński, G., and Niezgoda, T. (2015). Optimization of two-component armour. Bulletin of the Polish Academy of Sciences. Technical Sciences, 63(1).
  • Kumlu, U., AKAR, M. A., Başer, D., Hükümdar, Ö., and Karaçor, B. Ballistic evaluation of armor plates at different angles. In (pp. 230).
  • Mao, K., Toussaint, G., Komrakova, A., and Hogan, J. D. (2024). High-velocity impact failure modeling of Armox 500T steel: Model validation and application to structural design. International Journal of Impact Engineering, 183, 104790.
  • Palta, E., Gutowski, M., and Fang, H. (2018). A numerical study of steel and hybrid armor plates under ballistic impacts. International Journal of Solids Structures, 136, 279-294. https://doi.org/10.1016/j.ijsolstr.2017.12.021.
  • Patton, E. G., and Hart, R. J. (2024). Experimental and computational investigation into the damage mechanisms in composite metal hybrid panels subjected to high pressure blast loading. International Journal of Impact Engineering, 190, 104970. https://doi.org/10.1016/j.ijimpeng.2024.104970.
  • Peng, L., Tan, M., Zhang, X., Han, G., Xiong, W., Al Teneiji, M., and Guan, Z. (2022). Investigations of the ballistic response of hybrid composite laminated structures. Composite Structures, 282, 115019. https://doi.org/10.1016/j.compstruct.2021.115019.
  • Paman, A., Sukumar, G., Ramakrishna, B., and Madhu, V. (2020). An optimization scheme for a multilayer armour module against 7.62 mm armour piercing projectile. International Journal of Protective Structures, 11(2), 185-208.
  • Pirvu, C., and Deleanu, L. (2018). Ballistic testing of armor panels based on aramid. In Ballistics. IntechOpen.
  • Popławski, A., Kędzierski, P., and Morka, A. (2020). Identification of Armox 500T steel failure properties in the modeling of perforation problems. Materials Design, 190, 108536.
  • Rathod, S., Khaire, N.,and Tiwari, G. (2022). A comparative study on the ballistic performance of aramid and aluminum honeycomb sandwich strcutures. Composite Structures, 299, 116048. https://doi.org/10.1016/j.compstruct.2022.116048.
  • Sabet, A. R., Beheshty, M. H., and Rahimi, H. (2009). Experimental study of sharp‐tipped projectile perforation of GFRP plates containing sand filler under high velocity impact and quasi‐static loadings. Polymer Composites, 30(10), 1497-1509.
  • Saleh, M., Luzin, V., Kariem, M. M., and Ruan, D. (2016). Analysis of the residual stress in ARMOX 500T armour steel and numerical study of the resultant ballistic performance. Residual Stresses, 437.
  • Senthil, K., Iqbal, M. A., and Gupta, N. (2017). Ballistic resistance of mild steel plates of various thicknesses against 7.62 AP projectiles. International Journal of Protective Structures, 8(2), 177-198.
  • SSAB, (2024). https://ssabwebsitecdn.azureedge.net/-/media/files/en/armox/armox-protectionsteel-in-buildings-en.pdf?m=20170619110513, Erişim Tarihi: 28 Şubat 2024.
  • Stewart, J. K. (1985). Ballistic resistant protective materials—NIJ standard 0108.01. Washington: National Institute of Justice.
  • Tepeduzu, B., and Karakuzu, R. (2019). Ballistic performance of ceramic/composite structures. Ceramics International, 45(2), 1651-1660. https://doi.org/10.1016/j.ceramint.2018.10.042.
  • Valpolini, P. (2013). Passive armour: the final barrier. Supplement to Armada Int, 37(2), 22-28.
  • Yeter, E. (2019). Damage resistance investigation of Armox 500T and Aluminum 7075-T6 plates subjected to drop-weight and ballistic impact loads. Sakarya University Journal of Science, 23(6), 1080-1095.

Armox 500T Zırh Çeliği İçeren Hibrit Zırh Plakalarının 7.62 mm Tam Metal Kaplama Mermi Karşısındaki Balistik Davranışının Deneysel ve Sayısal Olarak Araştırılması

Year 2024, , 1176 - 1191, 15.09.2024
https://doi.org/10.31466/kfbd.1444509

Abstract

Bu çalışmada, Armox 500T zırh çeliği, Aramid /epoksi laminat kompozit ve Alüminyum bal peteği malzemelerinin tekli ve çoklu hibrit zırh yapıları çeşitli kombinasyonlarla bir araya getirilmiş ve balistik performansları araştırılmıştır. Deneysel çalışma, namlu çıkış hızı 847 ± 10 m/s olan 7.62×51 mm tam metal kaplama mermi ile balistik testler gerçekleştirilmiştir. Balistik darbe levhanın vurma yüzeyine dik gelecek şekilde atış yapılarak gerçekleştirilmiştir. Balistik test levhaları 250×250 mm boyutlarına sahip olup kalınlıkları ise malzeme konfigürasyonuna göre farklılık göstermiştir. Sonlu elemanlar analizi LS-Dyna programında açık zaman entegrasyonu yöntemi ile yapılmıştır. Deneysel çalışmalarda, monolitik çelik ve hibrit oluşan zırh yapısı balistik koruma sağlamamıştır. Bununla birlikte, metal ve kompozit levhaların hibritleşmesi ile sönümlenen balistik darbe enerji miktarı artırmıştır. Ayrıca, çalışmaya dahil edilen tüm zırh kombinasyonları ağırlık ve kalınlık açısından değerlendirilmiş birbirlerine üstünlükleri belirlenmeye çalışılmıştır. Hibritleşme ile elde edilen enerji sönümleme değerleri, plakaların ağırlığındaki artışa göre daha büyük bir yüzdesel artış sergilemiştir. Zırh kombinasyonlarının sonlu elemanlar analizi neticeleri deneysel veriler ile karşılaştırılması sağlanmış ve iyi uyum gözlemlenmiştir.

Ethical Statement

Yapılan çalışmada araştırma ve yayın etiğine uyulmuştur.

Supporting Institution

Manisa Celal Bayar Üniversitesi Bilimsel Araştırma Proje Birimi

Project Number

2023-020

Thanks

Bu çalışma Manisa Celal Bayar Üniversitesi Bilimsel Araştırma Proje Birimi 2023-020 numaralı proje kapsamında desteklenmiştir. ZSR Patlayıcı San. A.Ş. firmasına poligonlarını kullandırdığı ve iş birliği yaptığı için teşekkürlerimizi sunarız.

References

  • Bekci, M. L., Canpolat, B. H., Usta, E., Güler, M. S., and Cora, Ö. N. (2021). Ballistic performances of Ramor 500 and Ramor 550 armor steels at mono and bilayered plate configurations. Engineering Science Technology, an International Journal, 24(4), 990-995.
  • Coufal, V., Křesťan, J., and Vnouček, M. (2022). Ballistic Resistance of ARMOX Advance according to NATO standard AEP-55 STANAG 4569. IOP Conference Series: Materials Science and Engineering,
  • Da Silva, M., Stainer, D., Al-Qureshi, H., and Hotza, D. (2014). Ceramic armors for ballistic applications: a review. Cerâmica, 60, 323-331. https://doi.org/10.1590/S0366-69132014000300003
  • De Oliveira Braga, F., Da Luz, F. S., Monteiro, S. N., and Lima Jr, É. P. (2018). Effect of the impact geometry in the ballistic trauma absorption of a ceramic multilayered armor system. Journal of materials research technology, 7(4), 554-560. https://doi.org/10.1016/j.jmrt.2018.06.019
  • Garašić, I., Jurica, M., Iljkić, D., and Barišić, A. (2019). Determination of ballistic properties on ARMOX 500T steel welded joint. Engineering Review: Međunarodni časopis namijenjen publiciranju originalnih istraživanja s aspekta analize konstrukcija, materijala i novih tehnologija u području strojarstva, brodogradnje, temeljnih tehničkih znanosti, elektrotehnike, računarstva i građevinarstva, 39(2), 186-196.
  • Göçmen, Y., Erdogan, C., and Yalçinkaya, T. (2023). A numerical ballistic performance investigation of Armox 500T steel through ductile damage models. Engineering Fracture Mechanics, 292, 109658.
  • Gunes, R., Arslan, K., Apalak, M. K., and Reddy, J. N. (2019). Ballistic performance of honeycomb sandwich structures reinforced by functionally graded face plates. Journal of Sandwich Structures & Materials, 21(1), 211-229. https://doi.org/10.1177/109963621668946
  • Hub, J., and Komenda, J. (2009). Ballistic's Resistance of Steel Plate Hardox upon Impact of Non Penetrating Projectiles. Advances in Military Technology, 4(2), 79-91.
  • Iqbal, M. A., Senthil, K., Sharma, P., and Gupta, N. (2016). An investigation of the constitutive behavior of Armox 500T steel and armor piercing incendiary projectile material. International Journal of Impact Engineering, 96, 146-164.
  • Kędzierski, P., Morka, A., Sławiński, G., and Niezgoda, T. (2015). Optimization of two-component armour. Bulletin of the Polish Academy of Sciences. Technical Sciences, 63(1).
  • Kumlu, U., AKAR, M. A., Başer, D., Hükümdar, Ö., and Karaçor, B. Ballistic evaluation of armor plates at different angles. In (pp. 230).
  • Mao, K., Toussaint, G., Komrakova, A., and Hogan, J. D. (2024). High-velocity impact failure modeling of Armox 500T steel: Model validation and application to structural design. International Journal of Impact Engineering, 183, 104790.
  • Palta, E., Gutowski, M., and Fang, H. (2018). A numerical study of steel and hybrid armor plates under ballistic impacts. International Journal of Solids Structures, 136, 279-294. https://doi.org/10.1016/j.ijsolstr.2017.12.021.
  • Patton, E. G., and Hart, R. J. (2024). Experimental and computational investigation into the damage mechanisms in composite metal hybrid panels subjected to high pressure blast loading. International Journal of Impact Engineering, 190, 104970. https://doi.org/10.1016/j.ijimpeng.2024.104970.
  • Peng, L., Tan, M., Zhang, X., Han, G., Xiong, W., Al Teneiji, M., and Guan, Z. (2022). Investigations of the ballistic response of hybrid composite laminated structures. Composite Structures, 282, 115019. https://doi.org/10.1016/j.compstruct.2021.115019.
  • Paman, A., Sukumar, G., Ramakrishna, B., and Madhu, V. (2020). An optimization scheme for a multilayer armour module against 7.62 mm armour piercing projectile. International Journal of Protective Structures, 11(2), 185-208.
  • Pirvu, C., and Deleanu, L. (2018). Ballistic testing of armor panels based on aramid. In Ballistics. IntechOpen.
  • Popławski, A., Kędzierski, P., and Morka, A. (2020). Identification of Armox 500T steel failure properties in the modeling of perforation problems. Materials Design, 190, 108536.
  • Rathod, S., Khaire, N.,and Tiwari, G. (2022). A comparative study on the ballistic performance of aramid and aluminum honeycomb sandwich strcutures. Composite Structures, 299, 116048. https://doi.org/10.1016/j.compstruct.2022.116048.
  • Sabet, A. R., Beheshty, M. H., and Rahimi, H. (2009). Experimental study of sharp‐tipped projectile perforation of GFRP plates containing sand filler under high velocity impact and quasi‐static loadings. Polymer Composites, 30(10), 1497-1509.
  • Saleh, M., Luzin, V., Kariem, M. M., and Ruan, D. (2016). Analysis of the residual stress in ARMOX 500T armour steel and numerical study of the resultant ballistic performance. Residual Stresses, 437.
  • Senthil, K., Iqbal, M. A., and Gupta, N. (2017). Ballistic resistance of mild steel plates of various thicknesses against 7.62 AP projectiles. International Journal of Protective Structures, 8(2), 177-198.
  • SSAB, (2024). https://ssabwebsitecdn.azureedge.net/-/media/files/en/armox/armox-protectionsteel-in-buildings-en.pdf?m=20170619110513, Erişim Tarihi: 28 Şubat 2024.
  • Stewart, J. K. (1985). Ballistic resistant protective materials—NIJ standard 0108.01. Washington: National Institute of Justice.
  • Tepeduzu, B., and Karakuzu, R. (2019). Ballistic performance of ceramic/composite structures. Ceramics International, 45(2), 1651-1660. https://doi.org/10.1016/j.ceramint.2018.10.042.
  • Valpolini, P. (2013). Passive armour: the final barrier. Supplement to Armada Int, 37(2), 22-28.
  • Yeter, E. (2019). Damage resistance investigation of Armox 500T and Aluminum 7075-T6 plates subjected to drop-weight and ballistic impact loads. Sakarya University Journal of Science, 23(6), 1080-1095.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Mehmet Özer 0000-0002-6212-1217

Kaan Ferikel 0009-0006-1616-0174

İbrahim Kutay Yılmazçoban 0000-0002-9886-5533

Tayfur Kerem Demircioğlu 0000-0002-0518-0739

Fatih Balikoglu 0000-0003-3836-5569

Can Çivi 0000-0002-5302-9072

Project Number 2023-020
Early Pub Date September 15, 2024
Publication Date September 15, 2024
Submission Date February 28, 2024
Acceptance Date July 25, 2024
Published in Issue Year 2024

Cite

APA Özer, M., Ferikel, K., Yılmazçoban, İ. K., Demircioğlu, T. K., et al. (2024). Armox 500T Zırh Çeliği İçeren Hibrit Zırh Plakalarının 7.62 mm Tam Metal Kaplama Mermi Karşısındaki Balistik Davranışının Deneysel ve Sayısal Olarak Araştırılması. Karadeniz Fen Bilimleri Dergisi, 14(3), 1176-1191. https://doi.org/10.31466/kfbd.1444509