Research Article
BibTex RIS Cite

Kocaeli Yarımca RO-RO Limanı’ndaki Çakma Kazıkların Zamanla Taşıma Kapasitesi Artışlarının İncelenmesi

Year 2024, , 1836 - 1857, 15.12.2024
https://doi.org/10.31466/kfbd.1449832

Abstract

Çakma kazıkların yük taşıma kapasitesi zamanla değişir ve bu değişim, 'direnç artışı' ve 'direnç azalışı' olarak incelenir. Bu olgular genellikle aşırı boşluk suyu basıncının dağılmasıyla ilişkilidir. Kazık/zemin direnç artışı, kazık derinlik-çap oranı, geçen zaman ve zemin türü gibi faktörlere bağlıdır. Maksimum kapasite artışını değerlendirmek için ilk kapasite ölçümü çakma işleminden hemen sonra, ikinci ölçüm ise mümkün olduğunca ileri bir zamanda yapılır. Yarımca Ro-Ro Limanı inşaatında, proje teknik şartnamelerine ve ilgili standartlara uygun olarak 436 kazık çakılmış ve %100 dinamik test ile taşıma kapasiteleri belirlenmiştir. 24 kazıkta tekrar çakım yapılarak kapasite artışı gözlemlenmiştir. İlk ve tekrar çakım sonuçları, geçen zaman ve zemin koşullarının etkileri analiz edilmiştir. Kazık kapasite artış oranları 1.46 ile 3.41 arasında değişim göstermektedir. Toplam taşıma kapasitesi artışında, çevre sürtünme direncinin uç direncinden daha yüksek olduğu tespit edilmiştir. Kapasite artışları ile tekrar çakım zaman aralığı arasında belirgin bir ilişki kurulamamıştır. Kazıklarda zamanla kapasite değişimi, farklı araştırmacılar tarafından özellikle direnç artışı üzerine yoğun çalışmalarla incelenmekte ve kapasite artış faktörlerinin denetlediği bağıntılar geliştirmeye çalışılmaktadır. Ancak, henüz ortak görüş birliğiyle oluşturulmuş ve standardize edilmiş bir bağıntıya ulaşılamamıştır. Tekrar çakım ile kazık kapasitesindeki artışın projeye dahil edilmesi, kazık uzunlukları ve çakma ekipman kapasitesinin azaltılması gibi proje maliyetlerinin düşürülmesine katkı sağlayabilir. Vaka analizi ve veri paylaşımı ile bu alanda yapılmakta olan çalışmalara katkı sağlayacağı kaçınılmazdır.

References

  • Ateş B, Şadoğlu E (2022a) Experimental and Numerical Investigation of Load Sharing Ratio for Piled Raft Foundation in Granular Soils. KSCE J Civ Eng, 26, 1662–1673, https://doi.org/10.1007/s12205-022-1022-4.”
  • Ateş, B., Şadoğlu, E. (2023) Experimental Investigation for Group Efficiency of Driven Piles Embedded in Cohesionless Soil. KSCE J Civ Eng. https://doi.org/10.1007/s12205-023-1580-0.”
  • Ateş B, Şadoglu E (2022b) Experimental and Numerical Investigation for Vertical Stress Increments of Model Piled Raft Foundation in Sandy Soil. Iran J Sci Technol Trans Civ Eng, 46, 309–326, https://doi.org/10.1007/s40996-021-00618-7.
  • Ateş B, Şadoğlu E (2021a) Experimental Investigation of Optimum Piles Spacing for Piled Raft Foundation in Sandy Soils. Technical Journal, 32 (1), 10477-10494, DOI: 10.18400/tekderg.644885 (Lines 16-21 of page 3).
  • Ateş, B., Şadoğlu, E. (2021b) Experimental and Numerical Investigation of Single Pile Subjected to Vertical Load in Sand. 3rd International Conference on Advanced Engineering Technologies, Bayburt, Turkey.
  • Ateş, B., Şadoğlu, E. (2021c) Experimental Investigation of Pile Addition and Length on Bearing Capacity and Settlement of Rafts on Loose Sandy Soil, Afyon Kocatepe University Journal of Science and Engineering. 2, 025601 (399-407) DOI: 10.35414/akufemubid.863095.
  • Ahlinhan M. F., Adjovi E. C. (2020) Setup of axial bearing capacity of open-ended tubular steel piles driven in sand, Studia Geotechnica et Mechanica; 42(1); 74–82.
  • API WSD RP-2A Planning, Designing and Constructing Fixed Offshore Platforms, American Petroleum Institute, 2000 (with later errata and supplements).
  • Basu, P., Salgado, R., Prezzi, M. and Chakraborty, T. (2009). A method for accounting for pile set up and relaxation in pile design and quality assurance. Joint Transportation Research Program, SPR-2930.
  • Ciavaglia, F., Carey, J., Diambra, A. (2017). Time-dependent uplift capacity of driven piles in low to medium density chalk. Géotechnique Letters, 7(1), pp. 90–96.
  • Chimdesa, F.F., Chimdesa, F.F., Jilo, N.Z. et al. Numerical analysis of pile group, piled raft, and footing using finite element software PLAXIS 2D and GEO5. Sci Rep 13, 15875 (2023). https://doi.org/10.1038/s41598-023-42783-x
  • ECAP, (2017). Foundation design for deck on piles berth. Yarımca Ro-Ro Terminal Development Project. (Yayınlanmamış rapor).
  • Eurocode 7 (2004). Geotechnical Design-Part 1: General rules, BS-EN 1997-1:2004, BSI.
  • Geosan, (2017). Soil investigation interpretative report. Yarımca RO-RO Terminal Development Project. (Yayınlanmamış rapor).
  • Komurka, V. E., Wagner, A. B., and Edil, T. B. (2003). Estimating soil/pile set-up. Final Report Submitted to the Wisconsin Department of Transportation. Wisconsin Highway Research Program #0092-00-14, 55 pp.
  • Lee, M. L., Ming, J.W.S., Kok Sien Ti, K. S., Leong, L.T., Wai1, Y.T. (2019) Empirical equations for predicting pile/soil setup effect. IOP Conf. Series: Materials Science and Engineering 527 (2019) 012014 IOP Publishing doi:10.1088/1757-899X/527/1/012014.
  • Lua Hoang Thi, Xi Xiong, Tatsunori Matsumoto (2024) Effect of pile arrangement on long-term settlement and load distribution in piled raft foundation models supported by jacked-in piles in saturated clay. SOILS AND FOUNDATIONS 64(2):101426. https://doi.org/10.1016/j.sandf.2024.101426.
  • Mert, M. ve Özkan, M.T. (2017) Statik ve dinamik kazık yükleme deney sonuçlarının değerlendirilmesi ve karşılaştırılması. 7. Geoteknik Sempozyumu 22-23-24 Kasım 2017, İstanbul
  • Pile Dynamics, Inc. (PDA) (2012). Manual of the pile driving analyzer (Appendix A case method wave mechanics, theory and derivations, examples, and practice problems. 30725 Aurora Road Cleveland, OH 44139 USA www.pile.com
  • Pestana, J. M., Hunt, C. E. and Bray, J. D. (2002). Soil deformation and excess pore pressure field around a closed-ended pile. J. Geotechn. Geoenviron. Eng., 128, (1), 1–12.
  • Randolph, M. F., Carter, J. P. and Wroth, C. P. (1979). Driven piles in clay – the effects of installation and subsequent consolidation. Geotechnique, 29, (4), 361–393.
  • Rausche, F. (2015). The case method and the pile driving analyzer® (PDA) & PDPI June 2015 – PDA and case method. 2015 Pile Dynamics, Inc.
  • Sawant, V. & Shukla, Sanjay & Sivakugan, Nagaratnam & Das, B. (2013). Insight into pile set-up and load carrying capacity of driven piles. International Journal of Geotechnical Engineering. 7. 71-83. 10.1179/1938636212Z.0000000004.
  • Seed, H. B. and Reese, L.C. 1955. ‘The action of soft clay along friction piles’, Proc. American Society of Civil Engineers 81, Paper 842.
  • Soderberg, L. O. (1961). Consolidation theory applied to foundation pile time effects. Geotechnique, 11, (3), 217–225. Stuart C. J., Sandford T. C., Set-up Factors for Driven Piles Through the Presumpscot Formation, 2015 Symposium on the Presumpscot Formation, Portland, ME.
  • Tomlinson, M. J. (1986). Foundation design and construction (5th edition). Singapore: ELBS.
  • Tomlinson, M., Woodward, J., (2008). Pile design and construction practice. 5th Edition.
  • Yang, N. C., (1970). Relaxation of piles in sand and inorganic silt. J. Soil Mech. Found. Div., 96, 395–409.
  • Wang, Z., Zhao, C., Zhang, W. (2023). Multi objective design and optimization of squeezed branch pile based on orthogonal test. Scientific Reports, 13(1) https://doi.org/ 10.1038/s41598-023-49936-y

Investigation of the Time-Dependent Increase in Bearing Capacity of Driven Piles at Kocaeli Yarımca RO-RO Port

Year 2024, , 1836 - 1857, 15.12.2024
https://doi.org/10.31466/kfbd.1449832

Abstract

The load-bearing capacity of driven piles changes over time, and this change is investigated as 'set-up' (resistance increase) and 'relaxation' (resistance decrease). These phenomena are generally associated with the dissipation of excess porewater pressure. Pile/soil resistance increase depends on factors such as pile depth-to-diameter ratio, elapsed time, and soil type. To assess the maximum capacity increase, the first capacity measurement is conducted immediately after pile driving, while the second measurement is taken as late as possible. During the construction of the Yarımca Ro-Ro Port, 436 piles were driven in accordance with the project's technical specifications and relevant standards, and their load-bearing capacities were determined using 100% dynamic testing. Capacity increases were observed in 24 piles after restriking. The results of the initial and re-driving tests were analyzed in terms of elapsed time and soil conditions. The rate of pile capacity increase ranged from 1.46 to 3.41. It was found that the increase in total load-bearing capacity was primarily due to skin friction, which was greater than end-bearing resistance. A significant relationship between capacity increases and the interval between re-driving could not be established. The time-dependent capacity changes in piles are a focus of intensive studies, particularly on resistance gain, with researchers striving to develop correlations controlled by capacity increase factors. However, a standardized correlation has not yet been reached with consensus. Including the increase in pile capacity from re-driving in the project could contribute to cost reduction by minimizing pile lengths and driving equipment capacity. It is inevitable that case studies and data sharing will contribute to ongoing research in this field.

References

  • Ateş B, Şadoğlu E (2022a) Experimental and Numerical Investigation of Load Sharing Ratio for Piled Raft Foundation in Granular Soils. KSCE J Civ Eng, 26, 1662–1673, https://doi.org/10.1007/s12205-022-1022-4.”
  • Ateş, B., Şadoğlu, E. (2023) Experimental Investigation for Group Efficiency of Driven Piles Embedded in Cohesionless Soil. KSCE J Civ Eng. https://doi.org/10.1007/s12205-023-1580-0.”
  • Ateş B, Şadoglu E (2022b) Experimental and Numerical Investigation for Vertical Stress Increments of Model Piled Raft Foundation in Sandy Soil. Iran J Sci Technol Trans Civ Eng, 46, 309–326, https://doi.org/10.1007/s40996-021-00618-7.
  • Ateş B, Şadoğlu E (2021a) Experimental Investigation of Optimum Piles Spacing for Piled Raft Foundation in Sandy Soils. Technical Journal, 32 (1), 10477-10494, DOI: 10.18400/tekderg.644885 (Lines 16-21 of page 3).
  • Ateş, B., Şadoğlu, E. (2021b) Experimental and Numerical Investigation of Single Pile Subjected to Vertical Load in Sand. 3rd International Conference on Advanced Engineering Technologies, Bayburt, Turkey.
  • Ateş, B., Şadoğlu, E. (2021c) Experimental Investigation of Pile Addition and Length on Bearing Capacity and Settlement of Rafts on Loose Sandy Soil, Afyon Kocatepe University Journal of Science and Engineering. 2, 025601 (399-407) DOI: 10.35414/akufemubid.863095.
  • Ahlinhan M. F., Adjovi E. C. (2020) Setup of axial bearing capacity of open-ended tubular steel piles driven in sand, Studia Geotechnica et Mechanica; 42(1); 74–82.
  • API WSD RP-2A Planning, Designing and Constructing Fixed Offshore Platforms, American Petroleum Institute, 2000 (with later errata and supplements).
  • Basu, P., Salgado, R., Prezzi, M. and Chakraborty, T. (2009). A method for accounting for pile set up and relaxation in pile design and quality assurance. Joint Transportation Research Program, SPR-2930.
  • Ciavaglia, F., Carey, J., Diambra, A. (2017). Time-dependent uplift capacity of driven piles in low to medium density chalk. Géotechnique Letters, 7(1), pp. 90–96.
  • Chimdesa, F.F., Chimdesa, F.F., Jilo, N.Z. et al. Numerical analysis of pile group, piled raft, and footing using finite element software PLAXIS 2D and GEO5. Sci Rep 13, 15875 (2023). https://doi.org/10.1038/s41598-023-42783-x
  • ECAP, (2017). Foundation design for deck on piles berth. Yarımca Ro-Ro Terminal Development Project. (Yayınlanmamış rapor).
  • Eurocode 7 (2004). Geotechnical Design-Part 1: General rules, BS-EN 1997-1:2004, BSI.
  • Geosan, (2017). Soil investigation interpretative report. Yarımca RO-RO Terminal Development Project. (Yayınlanmamış rapor).
  • Komurka, V. E., Wagner, A. B., and Edil, T. B. (2003). Estimating soil/pile set-up. Final Report Submitted to the Wisconsin Department of Transportation. Wisconsin Highway Research Program #0092-00-14, 55 pp.
  • Lee, M. L., Ming, J.W.S., Kok Sien Ti, K. S., Leong, L.T., Wai1, Y.T. (2019) Empirical equations for predicting pile/soil setup effect. IOP Conf. Series: Materials Science and Engineering 527 (2019) 012014 IOP Publishing doi:10.1088/1757-899X/527/1/012014.
  • Lua Hoang Thi, Xi Xiong, Tatsunori Matsumoto (2024) Effect of pile arrangement on long-term settlement and load distribution in piled raft foundation models supported by jacked-in piles in saturated clay. SOILS AND FOUNDATIONS 64(2):101426. https://doi.org/10.1016/j.sandf.2024.101426.
  • Mert, M. ve Özkan, M.T. (2017) Statik ve dinamik kazık yükleme deney sonuçlarının değerlendirilmesi ve karşılaştırılması. 7. Geoteknik Sempozyumu 22-23-24 Kasım 2017, İstanbul
  • Pile Dynamics, Inc. (PDA) (2012). Manual of the pile driving analyzer (Appendix A case method wave mechanics, theory and derivations, examples, and practice problems. 30725 Aurora Road Cleveland, OH 44139 USA www.pile.com
  • Pestana, J. M., Hunt, C. E. and Bray, J. D. (2002). Soil deformation and excess pore pressure field around a closed-ended pile. J. Geotechn. Geoenviron. Eng., 128, (1), 1–12.
  • Randolph, M. F., Carter, J. P. and Wroth, C. P. (1979). Driven piles in clay – the effects of installation and subsequent consolidation. Geotechnique, 29, (4), 361–393.
  • Rausche, F. (2015). The case method and the pile driving analyzer® (PDA) & PDPI June 2015 – PDA and case method. 2015 Pile Dynamics, Inc.
  • Sawant, V. & Shukla, Sanjay & Sivakugan, Nagaratnam & Das, B. (2013). Insight into pile set-up and load carrying capacity of driven piles. International Journal of Geotechnical Engineering. 7. 71-83. 10.1179/1938636212Z.0000000004.
  • Seed, H. B. and Reese, L.C. 1955. ‘The action of soft clay along friction piles’, Proc. American Society of Civil Engineers 81, Paper 842.
  • Soderberg, L. O. (1961). Consolidation theory applied to foundation pile time effects. Geotechnique, 11, (3), 217–225. Stuart C. J., Sandford T. C., Set-up Factors for Driven Piles Through the Presumpscot Formation, 2015 Symposium on the Presumpscot Formation, Portland, ME.
  • Tomlinson, M. J. (1986). Foundation design and construction (5th edition). Singapore: ELBS.
  • Tomlinson, M., Woodward, J., (2008). Pile design and construction practice. 5th Edition.
  • Yang, N. C., (1970). Relaxation of piles in sand and inorganic silt. J. Soil Mech. Found. Div., 96, 395–409.
  • Wang, Z., Zhao, C., Zhang, W. (2023). Multi objective design and optimization of squeezed branch pile based on orthogonal test. Scientific Reports, 13(1) https://doi.org/ 10.1038/s41598-023-49936-y
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Articles
Authors

Mehmet İnce 0000-0002-6434-0405

Ahmet Karakaş 0000-0002-4672-2063

Özkan Coruk 0000-0001-5072-200X

Ozan Yüksel 0009-0004-1855-2732

Publication Date December 15, 2024
Submission Date March 9, 2024
Acceptance Date December 2, 2024
Published in Issue Year 2024

Cite

APA İnce, M., Karakaş, A., Coruk, Ö., Yüksel, O. (2024). Kocaeli Yarımca RO-RO Limanı’ndaki Çakma Kazıkların Zamanla Taşıma Kapasitesi Artışlarının İncelenmesi. Karadeniz Fen Bilimleri Dergisi, 14(4), 1836-1857. https://doi.org/10.31466/kfbd.1449832