This paper aims to solve the economic load dispatch problem (ELD) by using random numbers generated by chaotic maps with particle swarm optimization (PSO). The randomly generated coefficients r1 and r2 in the velocity equation of the PSO algorithm are generated by three different chaotic map methods namely logistic map, gaussian map, and tent map. As a result, three different methods are proposed: PSO with logistic map (LMPSO), PSO with Gaussian map (GMSPO), and PSO with tent map (TMPSO). These algorithms are applied to a 40-unit test system that includes transmission line losses, and the results are compared with the standard PSO algorithm. Each algorithm was run 50 times, and the maximum, minimum, and average values were recorded. All the proposed methods found lower costs than the standard PSO algorithm. Although the lowest cost was achieved with the GMPSO algorithm, the LMPSO algorithm was observed to be more successful on average.
Bu çalışmada kaotik haritalar ile üretilen rassal sayıların parçacık sürü optimizasyonu (PSO) ile kullanılarak ekonomik yük dağıtımı probleminin (EYD) çözülmesi hedeflenmiştir. PSO algoritmasının hız denkleminde yer alan ve rastgele oluşturulan r1 ve r2 katsayıları Lojistik kaotik harita metodu ile oluşturularak Lojistik haritalı PSO (LMPSO), gauss kaotik harita metodu ile oluşturularak gauss haritalı PSO (GMPSO) ve çadır kaotik harita metodu ile oluşturularak çadır haritalı PSO (TMPSO) metotları oluşturulmuştur. Oluşturulan bu algoritmalar iletim hattı kayıplarının dahil edildiği 40 üniteli test sistemine uygulanmış ve sonuçlar standart PSO algoritması ile karşılaştırılmıştır. Her algoritma 50 defa çalıştırılmış ve maksimum, minimum ve ortalama değerler kaydedilmiştir. Önerilen metotların hepsi standart PSO algoritmasından daha düşük maliyetler bulmuştur. En düşük maliyete GMPSO algoritması ile ulaşılmış olsa da ortalamada LMPSO algoritmasının daha başarılı olduğu gözlenmiştir.
Primary Language | English |
---|---|
Subjects | Power Plants |
Journal Section | Articles |
Authors | |
Publication Date | September 15, 2024 |
Submission Date | August 8, 2024 |
Acceptance Date | August 27, 2024 |
Published in Issue | Year 2024 |
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.