Research Article
BibTex RIS Cite

Effect of Fiber Thickness on Critical Fiber Ratio in Mechanical Tests of Nettle-Polymethylmethacrylate Composites

Year 2019, , 111 - 122, 30.06.2019
https://doi.org/10.31466/kfbd.554085

Abstract

The aim of this study was to determine the
critical ratios of fiber (vfcrit.) In nettle fiber/polymethyl methacrylate
composites depending on fiber thickness. Polymethyl methacrylate, a brittle
matrix, was used for this purpose. Nettle fiber, produced by natural method,
was used in the production of polymethylmethacrylate composites with nettle
fiber fiber with a ratio of 1,25%, 2,5, 3,75 and 5% by
Hand
lay-up
.The tensile strength, bending strength, and
impact strength of these compenents were used to obtain critical fiber ratios
based on the thickness of the fiber. The physical properties of the fiber and
its interaction with the matrix were determined by XRD and FITIR tests,
respectively. SEM images were examined with the help of the observed
microstructure of the fracture surfaces. According to the obtained data,
critical fiber diameter values in thick fibers are higher than thin fibers. The
results of the study showed that fine fibers had a positive effect on the
mechanical properties of the materials compared to thick fibers
.

References

  • Aslan, M , Kaya, M , Güler, O , Alver, Ü . (2018). Effect Of Fıbre Content On The Mechanıcal Propertıes Of Basalt Fıbre Reınforced Polylactıc Acıd (Pla) Composıtes. Tekstil Ve Konfeksiyon, 28 (1), 66-71
  • Bodros, E. & Baley, C., (2008) Study of the tensile properties of stinging netle fibres (Urtica dioica), Materials Letters, 62, 2143-2145
  • Büyükkaya, K . (2017). Investigation of Mechanical Behavior of Nettle Filled Hybrid Composites of Nettle Fiber-Hazelnut Shell. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5 (4), 133-144. DOI: 10.29109/http-gujsc-gazi-edu-tr.337247
  • Callister W.D, (2007) Materials Science and Engineering: An Introduction, seventh ed., John Wiley & Sons.
  • Ghosh R, Reena G, Krishna A.R., Raju B.H.L. (2011). Effect of fibre volume fraction on the tensile strength of Banana fibre reinforced vinyl ester resin composites. Int JAdv Eng Sci Technol, 4(1), 89–91.
  • Gümüskaya, E.; Usta, M.; Kirei, H. The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polym. Degrad. Stab. 2003, 81, 559–564.
  • Huang, G., Nettle (2005). (Urtica cannabina L) fibre, properties and spinning practice, Journal of the Textile Institute, 96(1),11-15
  • Hughes, M. Hıll, C. A. S. & Hague. J. R. B. W. (2002). The fracture toughness of bast fibre reinforced polyester composites, Journal of Materıals Scıence, 37, 4669 – 4676
  • Jonoobi, M., Harun, J., Tahir, P., Zaini, L., S. Saiflu A.S., & Makinejad, M., (2010). Characteristics of nanofibers extracted from kenaf core, Bio- Resources, 5(4), 2556–2566.
  • Ku , H., Wang, H., Pattarachaiyakoop, N., Trada, M., (2011) A review on the tensile properties of natural fiber reinforced polymer composites, Composites Part B: EngineeringVolume 42 (4) , 856–873
  • Kumar, B.P, Dharmendra, M. & Shrey, V. (2013). Tensile Behavior Of Nettle Fiber Composites Exposed To Various Environments, Journal Of Natural Fıbers, 10(3), 244-256
  • Lanzilao, G. Goswami, P. & Blackburn, R.S. (2016). Study of the morphological characteristics and physical properties of Himalayan giant nettle (Girardinia diversifolia L.) fibre in comparison with European nettle (Urtica dioica L.) fibre Materials Letters, 181, 200–203 Madsen B, Hoffmeyer P.,Lilholt H. (2007). Hemp yarn reinforced composites – II. Tensile properties. Compos Part A: Appl Sci Manuf, 38, 2204–2215.
  • Madsen B, Thygesen A., Liholt H. (2009) Plant fibre composites – porosity and stiffness,Compos Sci Technol,69,1057–1069. Malkapuram R, Kumar V, Yuvraj SN. Recent development in natural fibre reinforced polypropylene composites. J. Reinf Plast Compos 2008;28:1169–89.
  • Messiry, M.E. (2013). Theoretical analysis of natural fiber volume fraction of reinforced composites, Alexandria Engineering Journal, 52 (3), 301-306.https://doi.org/10.1016/j.aej.2013.01.006
  • Nechwatal A, Mieck K.P., Reusmann T. (2003). Developments in the characterization of natural fibre properties and in the use of natural fibres for composites. Comp Sci Tech.,63, 1273-1279.
  • Ornaghi, H.L., Jr.; Poletto, M.P.; Zattera, A.J., (2014) Amico, S.C. Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose , 21, 177–188.
  • Pan N, (1993) Theoretical determination of the optimal fiber volume fraction and fiber‐matrix property compatibility of short fiber composites, polymer composite, 14:(2) 85-93
  • Paukszta, D. Mańkowski, J. Kołodziej, J. & Szostak, M. (2013). Polypropylene (PP) Composites Reinforced with Stinging Nettle (Utrica dioica L.) Fiber, Journal of Natural Fibers, 10 (2) , 147-158
  • Shah,D. U., Schubel, P. J., Licence P. & Clifford, J. (2012). Determining the minimum, critical and maximum fibre content for twisted yarn reinforced plant fibre composites, Composites Science and Technology, 72, 1909–1917
  • Takagi, R.B., Nakagaito, A.N. (2016). Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers, Industrial Crops and Products, 94 (30), 562–573

Isırgan-Polimetilmetakrilat Kompozitlerin Mekanik Testlerinde Lif Kalınlığının Kritik Lif Oranına Etkisi

Year 2019, , 111 - 122, 30.06.2019
https://doi.org/10.31466/kfbd.554085

Abstract

Bu çalışmanın amacı, lif kalınlığına bağlı
olarak ısırgan lifi/ polimetilmetakrilat kompozitlerin mekanik testlerinde
lifin, kritik oranlarını ( vf
kritik.) ortaya koymaktır. Bu amaç için
gevrek bir matris olan polimetilmetakrilat kullanıldı. Doğal yöntemle üretilen
ısırgan lifi, elle yatırma yöntemi ile
  %
1,25, 2,5, 3,75 ve % 5 hacim oranlarında ısırgan lifi takviyeli
polimetilmetakrilat kompozitlerin üretiminde kullanıldı. Bu kompzitlerde çekme,
eğilme ve darbe mukavemeti, testlerinden elde edilen grafiklerden faydalanılarak,
lif kalınlığına bağlı kritik fiber oranları tesbit edildi. Lifin fiziksel özellikleri
ve matris ile etkileşimi, sırasıyla XRD ve FITIR testleri ile belirlendi. SEM
görüntüleri kırılma yüzeylerinin gözlemlenen mikro yapısı yardımı ile
incelendi. Elde edilen verilere göre, kalın liflerde kritik lif çapı değerleri,
ince liflere göre daha yüksektir. Bu sonuç, ince liflerin kalın liflere oranla
malzemelerin mekanik özelliklerini olumlu yönde etkilediğini gösterir
.

References

  • Aslan, M , Kaya, M , Güler, O , Alver, Ü . (2018). Effect Of Fıbre Content On The Mechanıcal Propertıes Of Basalt Fıbre Reınforced Polylactıc Acıd (Pla) Composıtes. Tekstil Ve Konfeksiyon, 28 (1), 66-71
  • Bodros, E. & Baley, C., (2008) Study of the tensile properties of stinging netle fibres (Urtica dioica), Materials Letters, 62, 2143-2145
  • Büyükkaya, K . (2017). Investigation of Mechanical Behavior of Nettle Filled Hybrid Composites of Nettle Fiber-Hazelnut Shell. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5 (4), 133-144. DOI: 10.29109/http-gujsc-gazi-edu-tr.337247
  • Callister W.D, (2007) Materials Science and Engineering: An Introduction, seventh ed., John Wiley & Sons.
  • Ghosh R, Reena G, Krishna A.R., Raju B.H.L. (2011). Effect of fibre volume fraction on the tensile strength of Banana fibre reinforced vinyl ester resin composites. Int JAdv Eng Sci Technol, 4(1), 89–91.
  • Gümüskaya, E.; Usta, M.; Kirei, H. The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polym. Degrad. Stab. 2003, 81, 559–564.
  • Huang, G., Nettle (2005). (Urtica cannabina L) fibre, properties and spinning practice, Journal of the Textile Institute, 96(1),11-15
  • Hughes, M. Hıll, C. A. S. & Hague. J. R. B. W. (2002). The fracture toughness of bast fibre reinforced polyester composites, Journal of Materıals Scıence, 37, 4669 – 4676
  • Jonoobi, M., Harun, J., Tahir, P., Zaini, L., S. Saiflu A.S., & Makinejad, M., (2010). Characteristics of nanofibers extracted from kenaf core, Bio- Resources, 5(4), 2556–2566.
  • Ku , H., Wang, H., Pattarachaiyakoop, N., Trada, M., (2011) A review on the tensile properties of natural fiber reinforced polymer composites, Composites Part B: EngineeringVolume 42 (4) , 856–873
  • Kumar, B.P, Dharmendra, M. & Shrey, V. (2013). Tensile Behavior Of Nettle Fiber Composites Exposed To Various Environments, Journal Of Natural Fıbers, 10(3), 244-256
  • Lanzilao, G. Goswami, P. & Blackburn, R.S. (2016). Study of the morphological characteristics and physical properties of Himalayan giant nettle (Girardinia diversifolia L.) fibre in comparison with European nettle (Urtica dioica L.) fibre Materials Letters, 181, 200–203 Madsen B, Hoffmeyer P.,Lilholt H. (2007). Hemp yarn reinforced composites – II. Tensile properties. Compos Part A: Appl Sci Manuf, 38, 2204–2215.
  • Madsen B, Thygesen A., Liholt H. (2009) Plant fibre composites – porosity and stiffness,Compos Sci Technol,69,1057–1069. Malkapuram R, Kumar V, Yuvraj SN. Recent development in natural fibre reinforced polypropylene composites. J. Reinf Plast Compos 2008;28:1169–89.
  • Messiry, M.E. (2013). Theoretical analysis of natural fiber volume fraction of reinforced composites, Alexandria Engineering Journal, 52 (3), 301-306.https://doi.org/10.1016/j.aej.2013.01.006
  • Nechwatal A, Mieck K.P., Reusmann T. (2003). Developments in the characterization of natural fibre properties and in the use of natural fibres for composites. Comp Sci Tech.,63, 1273-1279.
  • Ornaghi, H.L., Jr.; Poletto, M.P.; Zattera, A.J., (2014) Amico, S.C. Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose , 21, 177–188.
  • Pan N, (1993) Theoretical determination of the optimal fiber volume fraction and fiber‐matrix property compatibility of short fiber composites, polymer composite, 14:(2) 85-93
  • Paukszta, D. Mańkowski, J. Kołodziej, J. & Szostak, M. (2013). Polypropylene (PP) Composites Reinforced with Stinging Nettle (Utrica dioica L.) Fiber, Journal of Natural Fibers, 10 (2) , 147-158
  • Shah,D. U., Schubel, P. J., Licence P. & Clifford, J. (2012). Determining the minimum, critical and maximum fibre content for twisted yarn reinforced plant fibre composites, Composites Science and Technology, 72, 1909–1917
  • Takagi, R.B., Nakagaito, A.N. (2016). Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers, Industrial Crops and Products, 94 (30), 562–573
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Kenan Büyükkaya 0000-0002-8263-0756

Publication Date June 30, 2019
Published in Issue Year 2019

Cite

APA Büyükkaya, K. (2019). Isırgan-Polimetilmetakrilat Kompozitlerin Mekanik Testlerinde Lif Kalınlığının Kritik Lif Oranına Etkisi. Karadeniz Fen Bilimleri Dergisi, 9(1), 111-122. https://doi.org/10.31466/kfbd.554085