Research Article
BibTex RIS Cite

Yıldız Gölü Sedimentinden İzole Edilen Aktinobakterilerin Antimikrobiyal ve Enzim Üretim Kapasitelerinin Araştırılması

Year 2019, , 144 - 151, 30.06.2019
https://doi.org/10.31466/kfbd.563428

Abstract

Bu çalışmada, Yıldız Gölü (Gümüşhane)
sedimentinden aktinobakteri izolasyonu gerçekleştirilmiş ve izolatlar
antimikrobiyal aktivite ve enzim üretme kapasiteleri (amilaz, lipaz, proteaz,
pektinaz, selülaz) bakımından incelenmiştir. Tarama, uygun besiyeriler içeren
petrilerde gerçekleştirilmiştir. İzolasyon için SCA besiyeri kullanılmış ve
besiyeriye nistatin ve nalidiksik asit ilave edilmiştir. Antimikrobiyal
aktivite tespiti için, çapraz çizgi ekim yöntemi ve
C. tropicalis, C. albicans, E. coli, P. aeruginosa, MRSA, E. faecium, E. fecalis standart suşları tercih edilmiştir. Sonuç olarak izolatların  %55’i
en az bir test mikroorganizmasına karşı antimikrobiyal aktivite gösterirken
%66.6’sının ise en az bir enzimi üretebildiği belirlenmiştir. Bununla birlikte
izolatların %22.2’si ne antimikrobiyal aktivite ne de enzim üretme yeteneğine
sahip bulunmuştur.  Bu çalışma Yıldız
Gölü’nden aktinobakteri izolasyonu ve izolatların biyolojik aktivitesi üzerine
gerçekleştirilen ilk araştırmadır. Sonuç olarak, elde edilen aktinobakterilerin
endüstriyel ve farmakolojik çalışmalar için kaynak olabileceği öngörülmekle birlikte
aktif bileşiklerin izolasyonu ve karakterizasyonu için ileri çalışmalara
ihtiyaç duyulmaktadır

References

  • Al-Askar, A. A., Rashad, Y. M., Hafez, E. E., Abdulkhair, W. M., Baka, Z. A., and Ghoneem, K. M. (2015). Characterization of alkaline protease produced by Streptomyces griseorubens E44G and its possibility for controlling Rhizoctonia root rot disease of corn. Biotechnology and Biotechnological Equipment, 29(3), 457-462.
  • Aly, M. M., Tork, S., Al-Garni, S. M., and Nawar, L. (2012). Production of lipase from genetically improved Streptomyces exfoliates LP10 isolated from oilcontaminated soil. African Journal of Microbiology Research. 6, 1125-1137. Ayari, A, Morakchi, H., and Djamila, K.G. (2012). Identification and antifungal activity of Streptomyces sp. S72 isolated from Lake Oubeira sediments in North-East of Algeria. African Journal of Biotechnology, 11(2), 305-311.
  • Baltz, R. (2007). Antimicrobials from actinomycetes: Back to Future. Microbe. 2, 125-131.
  • Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M., Challis, G. L., and Thomson, N.R, et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417, 141-147.
  • Berdy, J. (2005). Bioactive microbial metabolites: a personal view. The Journal of antibiotics, 58 (1), 1-26.
  • Bull, A.T. (2011). Actinobacteria of the extremobiosphere, in Extremophiles Handbook, ed K. Horikoshi, (pp.1203-1240), Springer.
  • Demain, A.L., and Sanchez, S. (2009). Microbial drug discovery: 80 years of progress. The Journal of Antibiotics, 62, 5–16.
  • Fatokun, E. N., Nwodo, U. U., and Okoh A. I. (2016). Classical Optimization of Cellulase and Xylanase Production by a Marine Streptomyces Species. Applied Sciences, 6, 286.Fenical, W. (1993). Chemical studies of marine bacteria: developing a new resource. Chemical Reviews, 93, 1673-1683.
  • Fossi BT, Tavea F, Jiwoua C, and Ndjouenke R. (2009). Screening and phenotypic characterization of thermostable amylases producing yeasts and bacteria strains from some Cameroonian soils. African Journal Microbiol Research, 3(9), 504-514.
  • Gebreyohannes, G., Moges, F., Sahile, S., and Raja, N. (2013). Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Asian Pacific Journal of Tropical Biomedicine, 3(6), 426-435.
  • Ghai, R., Mizuno, C. M., Picazo, A., Camacho, A., and Rodriguez-Valera, F. (2014). Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing. Molecular Ecology, 23, 6073-6090.
  • Han, P. P., Shen, S. G., Jia, S. R., Wang, H. Y., Zhong, C., Tan, Z. L., et al. (2015). Comparison of bacterial community structures of terrestrial cyanobacterium Nostoc flagelliforme in three different regions of China using PCR-DGGE analysis. World Journal of Microbiology and Biotechnology, 31, 1061-1069.
  • Igarashi, Y. (2004). Screening of Novel Bioactive Compounds from Plant-Associated Actinomycetes. Actinomycetol, 18, 63-66.
  • Janaki, T., Nayak, B. K., and Ganesan T. (2016). Antifungal activity of soil actinomycetes from the mangrove Avicennia marina. Journal of Medicinal Plant Research, 4, 05-08.
  • Jiang, H., Huang, Q., Deng, S., Dong, H., and Yu, B. (2010). Planktonic actinobacterial diversity along a salinity gradient of a river and five lakes on the Tibetan Plateau. Extremophiles, 14, 367-376.
  • Kasana, R. C. Salwan, R., Dhar, H., Dutt, S., and Gulati, A. (2008). A Rapid and Easy Method for the Detection of Microbial Cellulases on Agar Plates Using Gram’s Iodine. Current Microbiology, 57, 503-507.
  • Kharat, K. R., Kharat, A., and Hardikar, B. P. (2009). Antimicrobial and cytotoxic activity of Streptomyces sp. from Lonar Lake. African Journal of Biotechnology, 8 (23), 6645-6648.
  • Kuddus, M., Roohi, J. M., Arif, J. M., and Ramteke, P. W. (2011). An overview of cold-active microbial alpha-amylase: adaptation strategies and biotechnological potentials. Biotechnology, 10, 246-258.
  • Mitra, A., Santra, S. C., and Mukherjee, J. (2008). Distribution of actinomycetes, their antagonistic behaviour and the physico chemical characteristics of the world’s largest tidal mangrove forest. Applied Microbiology and Biotechnology, 80, 685-695.
  • Mitra, P., and Chakrabartty, P. (2005). An extracellular protease with depilation activity from Streptomyces nogalator. Journal of Scientific and Industrial Research, 64, 978-983.
  • Mohamedin, A. H. (1999). Isolation, identification and some cultural conditions of a protease-producing thermophilic Streptomyces strain grown on chicken feather as a substrate. International Biodeterioration and Biodegradation, 43, 13-21.
  • Mohammadipanah, F., and Wink, J. (2016). Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity. Frontiers in Microbiology, 28, https://doi.org/10.3389/fmicb.2015.01541
  • Mullowney, M. W., Hwang, C. H., Newsome, A. G., Wei, X., Tanouye, U., Wan, B., et al. (2015). Diazaanthracene antibiotics from a freshwater-derived actinomycete with selective antibacterial activity toward Mycobacterium tuberculosis. ACS Infectious Diseases, 1, 168-174.
  • Nagaraju E. V., and Divakar G. (2013). Screening and Isolation of Pectinase producing Bacteria from Various Regions in Bangalore. International Journal of Research in Pharmaceutical and Biomedical Sciences, 4(1), 151-154.
  • Ningthoujam, D.S., Sanasam, S., and Nimaichand, S. (2009). Screening of Actinomycete Isolates from Niche Habitats in Manipur for Antibiotic Activity. American Journal of Biochemistry and Biotechnology, 5, 221-225.
  • Özcan, K., ve Çorbacı, C. (2017). Streptomyces sp. K22 ve K30 Suşlarından Lipaz ve Proteaz Enzim Üretimi. Karadeniz Fen Bilimleri Dergisi, 7(2), 128-135.
  • Pandey, B., Ghimire, P., and Agrawal, V. P. (2004). In: International Conference on the Great Himalayas: Climate, Health, Ecology, Management and Conservation, Kathmandu. Organized by Kathmandu University and the Aquatic Ecosystem Health and Management Society, Canada.
  • Ramesh, S., and Mathivanan, N. (2009). Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World Journal of Microbiology and Biotechnology, 25(12), 2103-2111.
  • Rapp P, and Backhaus S. (1992). Formation of extracellular lipase by filamentous fungi, yeasts and bacteria. Enzyme and Microbial Technology, 14, 938-943.
  • Selvameenal, L, Radhakrishnan, M., and Balagurunathan, R. (2009). Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Indian Journal of Pharmaceutical Sciences, 71(5), 499-504.
  • Shigeri, Y., Matsui, T., and Watanable, K. (2009). Decomposition of intact chicken feathers by a thermophile in combination with an acidulocomposting garbage- Treatment process. Bioscience, Biotechnology, and Biochemistry, 73, 2519-2521.
  • Sierra, G. A. (1957). Simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek. 23(1):15–22.
  • Singh, L. S., Baruah, I., and Bora, T.C. (2006). Actinomycetes of Loktak habitat: isolation and screening for antimicrobial activities. Biotechnology, 5(2), 217-221.
  • Terkina, I. A., Parfenova, V.V., and Ahn, T. S. (2006). Antagonistic activity of actinomycetes of Lake Baikal. Applied Biochemistry and Microbiology, 42, 173-176.
  • Thumar, J. T., Dhulia, K., and Singh, S. P. (2010). Isolation and partial purification of an antimicrobial agent from halotolerant alkaliphilic Streptomyces aburaviensis strain Kut-8. World Journal of Microbiology and Biotechnology, 26, 2081–2087.
  • Tiwari, K., and Gupta, R.K. (2012). Rare actinomycetes: a potential storehouse for novel antibiotics. Critical Reviews in Biotechnology, 32, 108-132.
  • Vishnupriya, B., Sundaramoorthi, C., Kalaivani, M., and Selvam, K. (2010). Production of lipase from Streptomyces griseus and evaluation of Bioparameters. International Journal of Chem Tech Research, 2, 1380-1383.

Investigation of Antimicrobial and Enzyme Production Capacities of Actinobacteria Isolated from Yıldız Lake Sediment

Year 2019, , 144 - 151, 30.06.2019
https://doi.org/10.31466/kfbd.563428

Abstract

In this study, actinobacteria was isolated from
Yıldız Lake (Gümüşhane) sediment and the isolates were examined for
antimicrobial activity and enzyme production capacities (amylase, lipase,
protease, pectinase, cellulase). Screening was carried out on petri dishes
containing suitable media. SCA medium was used for isolation and nistatin and
nalidixic acid were added. For the detection of antimicrobial activity
cross-streak method and C. tropicalis, C.
albicans, E. coli, P. aeruginosa, MRSA, E. faecium, E. fecalis
standard
strains were used. As a result, 55% of the isolates showed antimicrobial
activity agains to at least one test microorganism while 66.6% were able to
produce at least one enzyme. However, 22.2% of the isolates were not capable of
producing either antimicrobial activity or enzyme. This study was the first study
on isolation of actinobacteria from Yıldız Lake and the biological activity of
isolates. As a results, it is expected that the actinobacteria obtained from
this sediment may be the source for industrial and pharmacological studies, but
further studies are needed for the isolation and characterization of the active
compounds.

References

  • Al-Askar, A. A., Rashad, Y. M., Hafez, E. E., Abdulkhair, W. M., Baka, Z. A., and Ghoneem, K. M. (2015). Characterization of alkaline protease produced by Streptomyces griseorubens E44G and its possibility for controlling Rhizoctonia root rot disease of corn. Biotechnology and Biotechnological Equipment, 29(3), 457-462.
  • Aly, M. M., Tork, S., Al-Garni, S. M., and Nawar, L. (2012). Production of lipase from genetically improved Streptomyces exfoliates LP10 isolated from oilcontaminated soil. African Journal of Microbiology Research. 6, 1125-1137. Ayari, A, Morakchi, H., and Djamila, K.G. (2012). Identification and antifungal activity of Streptomyces sp. S72 isolated from Lake Oubeira sediments in North-East of Algeria. African Journal of Biotechnology, 11(2), 305-311.
  • Baltz, R. (2007). Antimicrobials from actinomycetes: Back to Future. Microbe. 2, 125-131.
  • Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M., Challis, G. L., and Thomson, N.R, et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417, 141-147.
  • Berdy, J. (2005). Bioactive microbial metabolites: a personal view. The Journal of antibiotics, 58 (1), 1-26.
  • Bull, A.T. (2011). Actinobacteria of the extremobiosphere, in Extremophiles Handbook, ed K. Horikoshi, (pp.1203-1240), Springer.
  • Demain, A.L., and Sanchez, S. (2009). Microbial drug discovery: 80 years of progress. The Journal of Antibiotics, 62, 5–16.
  • Fatokun, E. N., Nwodo, U. U., and Okoh A. I. (2016). Classical Optimization of Cellulase and Xylanase Production by a Marine Streptomyces Species. Applied Sciences, 6, 286.Fenical, W. (1993). Chemical studies of marine bacteria: developing a new resource. Chemical Reviews, 93, 1673-1683.
  • Fossi BT, Tavea F, Jiwoua C, and Ndjouenke R. (2009). Screening and phenotypic characterization of thermostable amylases producing yeasts and bacteria strains from some Cameroonian soils. African Journal Microbiol Research, 3(9), 504-514.
  • Gebreyohannes, G., Moges, F., Sahile, S., and Raja, N. (2013). Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Asian Pacific Journal of Tropical Biomedicine, 3(6), 426-435.
  • Ghai, R., Mizuno, C. M., Picazo, A., Camacho, A., and Rodriguez-Valera, F. (2014). Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing. Molecular Ecology, 23, 6073-6090.
  • Han, P. P., Shen, S. G., Jia, S. R., Wang, H. Y., Zhong, C., Tan, Z. L., et al. (2015). Comparison of bacterial community structures of terrestrial cyanobacterium Nostoc flagelliforme in three different regions of China using PCR-DGGE analysis. World Journal of Microbiology and Biotechnology, 31, 1061-1069.
  • Igarashi, Y. (2004). Screening of Novel Bioactive Compounds from Plant-Associated Actinomycetes. Actinomycetol, 18, 63-66.
  • Janaki, T., Nayak, B. K., and Ganesan T. (2016). Antifungal activity of soil actinomycetes from the mangrove Avicennia marina. Journal of Medicinal Plant Research, 4, 05-08.
  • Jiang, H., Huang, Q., Deng, S., Dong, H., and Yu, B. (2010). Planktonic actinobacterial diversity along a salinity gradient of a river and five lakes on the Tibetan Plateau. Extremophiles, 14, 367-376.
  • Kasana, R. C. Salwan, R., Dhar, H., Dutt, S., and Gulati, A. (2008). A Rapid and Easy Method for the Detection of Microbial Cellulases on Agar Plates Using Gram’s Iodine. Current Microbiology, 57, 503-507.
  • Kharat, K. R., Kharat, A., and Hardikar, B. P. (2009). Antimicrobial and cytotoxic activity of Streptomyces sp. from Lonar Lake. African Journal of Biotechnology, 8 (23), 6645-6648.
  • Kuddus, M., Roohi, J. M., Arif, J. M., and Ramteke, P. W. (2011). An overview of cold-active microbial alpha-amylase: adaptation strategies and biotechnological potentials. Biotechnology, 10, 246-258.
  • Mitra, A., Santra, S. C., and Mukherjee, J. (2008). Distribution of actinomycetes, their antagonistic behaviour and the physico chemical characteristics of the world’s largest tidal mangrove forest. Applied Microbiology and Biotechnology, 80, 685-695.
  • Mitra, P., and Chakrabartty, P. (2005). An extracellular protease with depilation activity from Streptomyces nogalator. Journal of Scientific and Industrial Research, 64, 978-983.
  • Mohamedin, A. H. (1999). Isolation, identification and some cultural conditions of a protease-producing thermophilic Streptomyces strain grown on chicken feather as a substrate. International Biodeterioration and Biodegradation, 43, 13-21.
  • Mohammadipanah, F., and Wink, J. (2016). Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity. Frontiers in Microbiology, 28, https://doi.org/10.3389/fmicb.2015.01541
  • Mullowney, M. W., Hwang, C. H., Newsome, A. G., Wei, X., Tanouye, U., Wan, B., et al. (2015). Diazaanthracene antibiotics from a freshwater-derived actinomycete with selective antibacterial activity toward Mycobacterium tuberculosis. ACS Infectious Diseases, 1, 168-174.
  • Nagaraju E. V., and Divakar G. (2013). Screening and Isolation of Pectinase producing Bacteria from Various Regions in Bangalore. International Journal of Research in Pharmaceutical and Biomedical Sciences, 4(1), 151-154.
  • Ningthoujam, D.S., Sanasam, S., and Nimaichand, S. (2009). Screening of Actinomycete Isolates from Niche Habitats in Manipur for Antibiotic Activity. American Journal of Biochemistry and Biotechnology, 5, 221-225.
  • Özcan, K., ve Çorbacı, C. (2017). Streptomyces sp. K22 ve K30 Suşlarından Lipaz ve Proteaz Enzim Üretimi. Karadeniz Fen Bilimleri Dergisi, 7(2), 128-135.
  • Pandey, B., Ghimire, P., and Agrawal, V. P. (2004). In: International Conference on the Great Himalayas: Climate, Health, Ecology, Management and Conservation, Kathmandu. Organized by Kathmandu University and the Aquatic Ecosystem Health and Management Society, Canada.
  • Ramesh, S., and Mathivanan, N. (2009). Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World Journal of Microbiology and Biotechnology, 25(12), 2103-2111.
  • Rapp P, and Backhaus S. (1992). Formation of extracellular lipase by filamentous fungi, yeasts and bacteria. Enzyme and Microbial Technology, 14, 938-943.
  • Selvameenal, L, Radhakrishnan, M., and Balagurunathan, R. (2009). Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Indian Journal of Pharmaceutical Sciences, 71(5), 499-504.
  • Shigeri, Y., Matsui, T., and Watanable, K. (2009). Decomposition of intact chicken feathers by a thermophile in combination with an acidulocomposting garbage- Treatment process. Bioscience, Biotechnology, and Biochemistry, 73, 2519-2521.
  • Sierra, G. A. (1957). Simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek. 23(1):15–22.
  • Singh, L. S., Baruah, I., and Bora, T.C. (2006). Actinomycetes of Loktak habitat: isolation and screening for antimicrobial activities. Biotechnology, 5(2), 217-221.
  • Terkina, I. A., Parfenova, V.V., and Ahn, T. S. (2006). Antagonistic activity of actinomycetes of Lake Baikal. Applied Biochemistry and Microbiology, 42, 173-176.
  • Thumar, J. T., Dhulia, K., and Singh, S. P. (2010). Isolation and partial purification of an antimicrobial agent from halotolerant alkaliphilic Streptomyces aburaviensis strain Kut-8. World Journal of Microbiology and Biotechnology, 26, 2081–2087.
  • Tiwari, K., and Gupta, R.K. (2012). Rare actinomycetes: a potential storehouse for novel antibiotics. Critical Reviews in Biotechnology, 32, 108-132.
  • Vishnupriya, B., Sundaramoorthi, C., Kalaivani, M., and Selvam, K. (2010). Production of lipase from Streptomyces griseus and evaluation of Bioparameters. International Journal of Chem Tech Research, 2, 1380-1383.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Kadriye Özcan 0000-0002-4913-6035

Publication Date June 30, 2019
Published in Issue Year 2019

Cite

APA Özcan, K. (2019). Yıldız Gölü Sedimentinden İzole Edilen Aktinobakterilerin Antimikrobiyal ve Enzim Üretim Kapasitelerinin Araştırılması. Karadeniz Fen Bilimleri Dergisi, 9(1), 144-151. https://doi.org/10.31466/kfbd.563428