Research Article
BibTex RIS Cite

Numerical Investigation of Different Airfoils at Low Reynolds Number in terms of Aerodynamic Performance of Sailplanes by using XFLR5

Year 2018, Volume: 8 Issue: 1, 47 - 65, 18.06.2018
https://doi.org/10.31466/kfbd.423932

Abstract

Wing design has a critical
importance for sailplanes as well as for all the aircrafts in terms of
aerodynamic performance. One of the important design phases of an
aerodynamically efficient sailplane wing is selection of the appropriate
airfoil. Airfoil selection of a wing design firstly requires performing
aerodynamic performance analyses of different airfoils to compare according to
determined requirements. In this study, numerical investigation of nine
different airfoils was performed with the aim of comparison in terms of
aerodynamic performance of sailplanes by using the general public licensed
computer program XFLR5. Firstly, the airfoils which will be compared were
selected from Eppler, Goettingen, NACA and Wortmann airfoil families. For the
comparison of the airfoils, the two-dimensional analysis validation of the
program was done with experimental data, and the airfoils were analyzed in two
dimensions under the same validated analysis conditions. The analyses were
performed at 2x105 Reynolds number and angle of attacks from -5 to
20 degrees. According to obtained results from the analyses, the airfoils were
compared in terms of determined criteria which are thickness, maximum lift
coefficient and its angle of attack, maximum drag to lift ratio, drag
coefficient at maximum lift condition, pitching moment at zero lift condition and
power factor.

References

  • Deperrois, A. (2009). XFLR5 Analysis of foils and wings operating at low Reynolds numbers. Guidelines for XFLR5.
  • Drela, M. (1989). XFOIL: An analysis and design system for low Reynolds number airfoils. In Low Reynolds number aerodynamics (pp. 1-12). Springer, Berlin, Heidelberg.
  • Eppler, R., Somers, D. M. (1980). A computer program for the design and analysis of low-speed airfoils.
  • Thomas, F., Milgram, J. (1999). Fundamentals of sailplane design (Vol. 3). College Park, Maryland: College Park Press.
  • Gudmundsson, S. (2013). General aviation aircraft design: Applied Methods and Procedures. Butterworth-Heinemann.
  • Hansman, R. J., Craig, A. P. (1987). Low Reynolds number tests of NACA 64-210, NACA 0012, and Wortmann FX67-K170 airfoils in rain. Journal of Aircraft, 24(8), 559-566.
  • Hasan, M., El-Shahat, A., Rahman, M. (2017). Performance Investigation of Three Combined Airfoils Bladed Small Scale Horizontal Axis wind Turbine by BEM and CFD Analysis. Journal of Power and Energy Engineering, 5(05), 14.
  • Lasauskas, E., Naujokaitis, L. (2009). Analysis of three wing sections. Aviation, 13(1), 3-10.
  • McGhee, R. J., Walker, B. S., and Millard, B. F. (1988). Experimental Results for Eppler E 387 Airfoil at Low Reynolds Numbers in the Langley Low-Turbulence Pressure Tunnel. NASA Technical Memorandum-4062.
  • Morgado, J., Vizinho, R., Silvestre, M. A. R., Páscoa, J. C. (2016). XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils. Aerospace Science and Technology, 52, 207-214.
  • Frati, S. (1946). The Glider. Editore Ulrico Hoepli Milano, Milan, Italy.
  • Sudhakar, S., Mishra, S., Ramesh, G., Madhavan, K. T., Ahmed, S. (2011). Experimental Studies on SM4308 Airfoil at Low Reynolds Numbers.
  • Vuruşkan, A., Özdemir, U., Yükselen, M.A., İnalhan, G. (2014, September). Dikey İniş Kalkış Yapabilen Bir İnsansız Hava Aracının (Turaç*) Aerodinamik Analizi. V. ULUSAL HAVACILIK VE UZAY KONFERANSI. Kayseri: Erciyes University.
  • Wahidi, R., Bridges, D. (2009, June). Experimental investigation of the boundary layer and pressure measurements on airfoils with laminar separation bubbles. In 39th AIAA Fluid Dynamics Conference (p. 4278).
  • Xin, H. U. A., Rui, G. U., JIN, J. F., LIU, Y. R., Yi, M. A., Qian, C. O. N. G., ZHENG, Y. (2010). Numerical simulation and aerodynamic performance comparison between seagull aerofoil and NACA 4412 aerofoil under low-reynolds. Advances in Natural Science, 3(2), 244-250.
  • URL-1: http://m-selig.ae.illinois.edu/ads/coord_database.html (Last Update: 12th of May 2018)

Numerical Investigation of Different Airfoils at Low Reynolds Number in terms of Aerodynamic Performance of Sailplanes by using XFLR5

Year 2018, Volume: 8 Issue: 1, 47 - 65, 18.06.2018
https://doi.org/10.31466/kfbd.423932

Abstract

Kanat tasarımı, tüm hava
araçları için olduğu gibi, planörler için de aerodinamik performans açısından
kritik öneme sahiptir. Aerodinamik olarak verimli bir planör kanadı tasarımının
en önemli aşamalarından biri de uygun kanat kesit geometrisi (kanat profili)
seçimidir. Bir kanat tasarımının kanat kesit geometrisi seçimi, öncelikle
belirlenen gerekliliklere dayanarak karşılaştırmak üzere, farklı kanat kesit
geometrilerinin aerodinamik performans analizlerini gerektirir. Bu çalışmada,
dokuz farklı kanat kesit geometrisi planör aerodinamik performansı açısından
karşılaştırmak üzere genel kamu lisanslı XFLR5 programı kullanılarak nümerik
olarak incelenmiştir. Öncelikle karşılaştırılacak geometriler Eppler,
Goettingen, NACA ve Wortmann kanat kesit geometrisi ailelerinden seçilmiştir.
Karşılaştırma için programın deneysel verilerle iki boyutlu doğrulaması
yapılmış ve seçilen kanat kesit geometrileri aynı koşullar altında analiz
edilmiştir. Analizler
2x105 Reynolds
sayısında ve -5 ile 20 derece arasındaki hücum açılarında gerçekleştirilmiştir.
Analizlerden elde edilen sonuçlara göre kanat kesit geometrileri belirlenen
gereklilikler olan kalınlık, maksimum kaldırma katsayısı ve hücum açısı,
maksimum kaldırma durumundaki sürüklenme katsayısı, maksimum süzülme oranı,
sıfır kaldırma durumundaki yunuslama momenti ve güç faktörüne göre
karşılaştırılmıştır.

References

  • Deperrois, A. (2009). XFLR5 Analysis of foils and wings operating at low Reynolds numbers. Guidelines for XFLR5.
  • Drela, M. (1989). XFOIL: An analysis and design system for low Reynolds number airfoils. In Low Reynolds number aerodynamics (pp. 1-12). Springer, Berlin, Heidelberg.
  • Eppler, R., Somers, D. M. (1980). A computer program for the design and analysis of low-speed airfoils.
  • Thomas, F., Milgram, J. (1999). Fundamentals of sailplane design (Vol. 3). College Park, Maryland: College Park Press.
  • Gudmundsson, S. (2013). General aviation aircraft design: Applied Methods and Procedures. Butterworth-Heinemann.
  • Hansman, R. J., Craig, A. P. (1987). Low Reynolds number tests of NACA 64-210, NACA 0012, and Wortmann FX67-K170 airfoils in rain. Journal of Aircraft, 24(8), 559-566.
  • Hasan, M., El-Shahat, A., Rahman, M. (2017). Performance Investigation of Three Combined Airfoils Bladed Small Scale Horizontal Axis wind Turbine by BEM and CFD Analysis. Journal of Power and Energy Engineering, 5(05), 14.
  • Lasauskas, E., Naujokaitis, L. (2009). Analysis of three wing sections. Aviation, 13(1), 3-10.
  • McGhee, R. J., Walker, B. S., and Millard, B. F. (1988). Experimental Results for Eppler E 387 Airfoil at Low Reynolds Numbers in the Langley Low-Turbulence Pressure Tunnel. NASA Technical Memorandum-4062.
  • Morgado, J., Vizinho, R., Silvestre, M. A. R., Páscoa, J. C. (2016). XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils. Aerospace Science and Technology, 52, 207-214.
  • Frati, S. (1946). The Glider. Editore Ulrico Hoepli Milano, Milan, Italy.
  • Sudhakar, S., Mishra, S., Ramesh, G., Madhavan, K. T., Ahmed, S. (2011). Experimental Studies on SM4308 Airfoil at Low Reynolds Numbers.
  • Vuruşkan, A., Özdemir, U., Yükselen, M.A., İnalhan, G. (2014, September). Dikey İniş Kalkış Yapabilen Bir İnsansız Hava Aracının (Turaç*) Aerodinamik Analizi. V. ULUSAL HAVACILIK VE UZAY KONFERANSI. Kayseri: Erciyes University.
  • Wahidi, R., Bridges, D. (2009, June). Experimental investigation of the boundary layer and pressure measurements on airfoils with laminar separation bubbles. In 39th AIAA Fluid Dynamics Conference (p. 4278).
  • Xin, H. U. A., Rui, G. U., JIN, J. F., LIU, Y. R., Yi, M. A., Qian, C. O. N. G., ZHENG, Y. (2010). Numerical simulation and aerodynamic performance comparison between seagull aerofoil and NACA 4412 aerofoil under low-reynolds. Advances in Natural Science, 3(2), 244-250.
  • URL-1: http://m-selig.ae.illinois.edu/ads/coord_database.html (Last Update: 12th of May 2018)
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İbrahim Halil Güzelbey

Yüksel Eraslan

Mehmet Hanifi Doğru

Publication Date June 18, 2018
Published in Issue Year 2018 Volume: 8 Issue: 1

Cite

APA Güzelbey, İ. H., Eraslan, Y., & Doğru, M. H. (2018). Numerical Investigation of Different Airfoils at Low Reynolds Number in terms of Aerodynamic Performance of Sailplanes by using XFLR5. Karadeniz Fen Bilimleri Dergisi, 8(1), 47-65. https://doi.org/10.31466/kfbd.423932