Research Article
BibTex RIS Cite

Lunar Excursion Module Landing Control System Design with P, PI and PID Controllers

Year 2019, Volume: 9 Issue: 2, 390 - 405, 15.12.2019
https://doi.org/10.31466/kfbd.647211

Abstract

The development of space technology has always been one of the most exciting areas of science. System, used in the Moon Landing of mankind, became worth examining with developing technologies. In particular, developments in control systems theory have led to significant successes in the control of highly complex systems. It is also possible to re-examine the performance of this system, which is quite costly, by using simulation methods. The vehicle is called as the Lunar Excursion Module (LEM), which brings the astronauts down to the Moon’s surface from the space vehicle in the Moon's orbit. Proportional (P), proportional-integral (PI) and proportional-integral-derivative (PID) controllers were prepared for the safe descent of the lunar navigation module modeled using MATLAB / Simulink computer software. These selected controllers ensure that the individually controlled LEM operates in accordance with the rules set out in the current landing procedure in the literature. The most appropriate coefficients for the controllers were selected by using the system response curve and continuous vibration methods and their performances were compared in detail.

References

  • Apollo 9 Mission Report – 1969, NASA, www.nasa.gov, 1999.
  • Arney,D. Bagchi, P. and Talati, C.” Lunar excursion module landing control system”, MIT-Technical Report, 2004.
  • Bilimoria, K. D. “Effects of Control Power and Guidance Cues on Lunar Lander Handling Qualities," Journal of Spacecraft and Rockets, vol.46, no.6, pp.1261-1271, 2009.
  • Bolton, W. Control Engineering, Longman, Malaysia, pp.67-75, 1998.
  • Brown, B. McInnes, C. Allouis, E. "Dynamic intelligent autonomous control of an asteroid lander," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol.224, no.8, pp.865-879, 2010. doi.org/10.1243/09544100JAERO724
  • Chilton, R. G. “Apollo Spacecraft Control Systems,” The Symposium on Automatic Control in Peaceful Uses of Space, Stavanger, Norway, 1965.
  • Grassi, E., Tsakalis, K.S. Dash, S. Gaikwad, S.V. and Stein, G. “Adaptive/self-tuning PID control by erequency loop-shaping”, Proceedings of the 39th IEEE Conference on Decision and Control Sydney, pp.1099-1101, 2000.
  • Image Credit:NASA, www.nasa.gov, 2018.
  • Johannes, R. P. Armstrong, N. A. and Hays, T. C. “Development of the X-15 Self-Adaptive Flight-Control System,” January 1961, NASA, www.nasa.gov, 2018.
  • Klumpp, Al. R. "Apollo lunar descent guidance," Automatica, vol.10, no.2, pp.133-146, 1974.
  • Kuo, B.C., Automatic Control Systems, Literatur Pub., İstanbul, pp. 687-733, 1999.
  • Kwon, J. Lee, D. and Bang, H. "Virtual Trajectory Augmented Landing Control Based on Dual Quaternion for Lunar Lander," Journal of Guidance, Control, and Dynamics, vol. 39, no. 9, pp. 2044
  • Liu, Y. Song, S. Li M. and Wang, C. "Landing stability analysis for lunar landers using computer simulation experiments," International Journal of Advanced Robotic Systems, DOI: 10.1177/1729881417748441, pp. 1–15, 2017.
  • Lugo, J.R.P. “Lunar Module Attitude Controller Assembly Input Processing,” 2004 MAPLD International Conference, Washington, D.C, USA, 2004.
  • Lunar Module LM 10 through LM 14 Vehicle Familiarization Manual - LMA790-2, Grumman Aerospace Corporation, Bethpage-New York, 1969.
  • Mueller, E. . Bilimoria, E. D and Frost, C. "Improved Lunar Lander Handling Qualities Through Control Response Type and Display Enhancements," Journal of Spacecraft and Rockets, vol.49, no.2, pp.378-389, 2012.
  • Mueller, E. Bilimoria, K. and Frost, C. "Effects of Control Power and Inceptor Sensitivity on Lunar Lander Handling Qualities," Journal of Spacecraft and Rockets, vol.48, no.3, pp.454-466, 2011.
  • Orr, J. S. and Shtessel, Y. B. "Lunar spacecraft powered descent control using higher-order sliding mode techniques," Journal of the Franklin Institute, vol.349, no.2, pp.476-492, 2012.
  • Rogers, W. F. Apollo Experience Report - Lunar Module Landing Gear Subsystem, National Aeronautics And Space Administration, Washington, D.C., 1972.
  • Sarıoğlu, K., Automatic Control, Birsen Pub., İstanbul, pp. 1-90, 1999
  • Smyth, R. K. “The Lunar Excursion Module”, Grumman Aircraft Engineering Corporation - Technical Report, 1965.
  • Stengel, R. F. “Manual Attitude Control of the Lunar Module,” AIAA Guidance, Control and Flight Mechanics Conference, AIAA paper 69-892, pp.1-17, 1969.
  • Stengel, R.F. "Toward intelligent flight control," IEEE Transactions on Systems, Man, and Cybernetics, vol.23, no.6, pp.1699-1717, 1993.
  • Thurman, S. W. and Flashner, H. "New pulse-modulation technique for guidance and control of automated spacecraft," Journal of Guidance, Control, and Dynamics, vol.19, no.5, pp.1007-1016, 1996.
  • Thurman, S.W. and Flashner, H. "Robust digital autopilot design for spacecraft equipped with pulse-operated thrusters," Journal of Guidance, Control, and Dynamics, vol.19, no.5, pp.1047-1055, 1996.
  • Zhang, F. and Duan, G.R. Integrated translational and rotational control for the terminal landing phase of a lunar module," Aerospace Science and Technology, vol.27, no.1, pp.112-126, 2013.
  • Ziegler, J. G. and Nichols, N. B. Optimum settings for automatic controllers. Journal of dynamic systems, measurement, and control, 115(2B), 220-222, 1993.

Ay Gezinti Modülünün İniş Kontrol Sisteminin P, PI ve PID Denetleyicilerle Tasarımı

Year 2019, Volume: 9 Issue: 2, 390 - 405, 15.12.2019
https://doi.org/10.31466/kfbd.647211

Abstract

Uzay teknolojisinin gelişimi bilimin her zaman en heyecan verici alanlarından biri olmuştur. İnsanlığın Ay yüzeyinde kullandığı sistem, gelişen son teknolojilerle tekrar incelenmeye değer hale gelmektedir. Özellikle kontrol sistemleri teorisindeki gelişmeler ile oldukça karmaşık sistemlerin denetimleri üzerinde ciddi başarılar sağlamıştır. Ayrıca oldukça maliyetli olan bu sistemin performansını, benzetim yöntemlerini de kullanarak tekrar inceleme olanağı da bulunmaktadır. Bu çalışmadaki incelenen araç astronotları Ay'ın yörüngesindeki uzay aracından Ay'ın yüzeyine indiren Ay Gezisi Modülü (LEM) olarak adlandırılır. MATLAB/Simulink bilgisayar yazılımında modellenen ay gezinti modülünün Ay'ın yüzeyine güvenli inişi için oransal (P), oransal-integral (PI) ve oransal-integral-türev (PID) denetleyicileri hazırlanmıştır. Denetleyiciler tarafından kontrol edilen LEM’in literatürdeki mevcut iniş prosedüründe belirtilen kurallara uygun olarak çalışması sağlanmıştır. Denetleyiciler için en uygun katsayılar sistem cevap eğrisi ile sürekli titreşim metotları kullanılarak seçilmiş ve bu denetleyicilerin performansları detaylı olarak karşılaştırılmıştır.

References

  • Apollo 9 Mission Report – 1969, NASA, www.nasa.gov, 1999.
  • Arney,D. Bagchi, P. and Talati, C.” Lunar excursion module landing control system”, MIT-Technical Report, 2004.
  • Bilimoria, K. D. “Effects of Control Power and Guidance Cues on Lunar Lander Handling Qualities," Journal of Spacecraft and Rockets, vol.46, no.6, pp.1261-1271, 2009.
  • Bolton, W. Control Engineering, Longman, Malaysia, pp.67-75, 1998.
  • Brown, B. McInnes, C. Allouis, E. "Dynamic intelligent autonomous control of an asteroid lander," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol.224, no.8, pp.865-879, 2010. doi.org/10.1243/09544100JAERO724
  • Chilton, R. G. “Apollo Spacecraft Control Systems,” The Symposium on Automatic Control in Peaceful Uses of Space, Stavanger, Norway, 1965.
  • Grassi, E., Tsakalis, K.S. Dash, S. Gaikwad, S.V. and Stein, G. “Adaptive/self-tuning PID control by erequency loop-shaping”, Proceedings of the 39th IEEE Conference on Decision and Control Sydney, pp.1099-1101, 2000.
  • Image Credit:NASA, www.nasa.gov, 2018.
  • Johannes, R. P. Armstrong, N. A. and Hays, T. C. “Development of the X-15 Self-Adaptive Flight-Control System,” January 1961, NASA, www.nasa.gov, 2018.
  • Klumpp, Al. R. "Apollo lunar descent guidance," Automatica, vol.10, no.2, pp.133-146, 1974.
  • Kuo, B.C., Automatic Control Systems, Literatur Pub., İstanbul, pp. 687-733, 1999.
  • Kwon, J. Lee, D. and Bang, H. "Virtual Trajectory Augmented Landing Control Based on Dual Quaternion for Lunar Lander," Journal of Guidance, Control, and Dynamics, vol. 39, no. 9, pp. 2044
  • Liu, Y. Song, S. Li M. and Wang, C. "Landing stability analysis for lunar landers using computer simulation experiments," International Journal of Advanced Robotic Systems, DOI: 10.1177/1729881417748441, pp. 1–15, 2017.
  • Lugo, J.R.P. “Lunar Module Attitude Controller Assembly Input Processing,” 2004 MAPLD International Conference, Washington, D.C, USA, 2004.
  • Lunar Module LM 10 through LM 14 Vehicle Familiarization Manual - LMA790-2, Grumman Aerospace Corporation, Bethpage-New York, 1969.
  • Mueller, E. . Bilimoria, E. D and Frost, C. "Improved Lunar Lander Handling Qualities Through Control Response Type and Display Enhancements," Journal of Spacecraft and Rockets, vol.49, no.2, pp.378-389, 2012.
  • Mueller, E. Bilimoria, K. and Frost, C. "Effects of Control Power and Inceptor Sensitivity on Lunar Lander Handling Qualities," Journal of Spacecraft and Rockets, vol.48, no.3, pp.454-466, 2011.
  • Orr, J. S. and Shtessel, Y. B. "Lunar spacecraft powered descent control using higher-order sliding mode techniques," Journal of the Franklin Institute, vol.349, no.2, pp.476-492, 2012.
  • Rogers, W. F. Apollo Experience Report - Lunar Module Landing Gear Subsystem, National Aeronautics And Space Administration, Washington, D.C., 1972.
  • Sarıoğlu, K., Automatic Control, Birsen Pub., İstanbul, pp. 1-90, 1999
  • Smyth, R. K. “The Lunar Excursion Module”, Grumman Aircraft Engineering Corporation - Technical Report, 1965.
  • Stengel, R. F. “Manual Attitude Control of the Lunar Module,” AIAA Guidance, Control and Flight Mechanics Conference, AIAA paper 69-892, pp.1-17, 1969.
  • Stengel, R.F. "Toward intelligent flight control," IEEE Transactions on Systems, Man, and Cybernetics, vol.23, no.6, pp.1699-1717, 1993.
  • Thurman, S. W. and Flashner, H. "New pulse-modulation technique for guidance and control of automated spacecraft," Journal of Guidance, Control, and Dynamics, vol.19, no.5, pp.1007-1016, 1996.
  • Thurman, S.W. and Flashner, H. "Robust digital autopilot design for spacecraft equipped with pulse-operated thrusters," Journal of Guidance, Control, and Dynamics, vol.19, no.5, pp.1047-1055, 1996.
  • Zhang, F. and Duan, G.R. Integrated translational and rotational control for the terminal landing phase of a lunar module," Aerospace Science and Technology, vol.27, no.1, pp.112-126, 2013.
  • Ziegler, J. G. and Nichols, N. B. Optimum settings for automatic controllers. Journal of dynamic systems, measurement, and control, 115(2B), 220-222, 1993.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hilmi Zenk 0000-0002-1653-8580

Halil Şenol This is me 0000-0003-3056-5013

Faruk Güner 0000-0002-3438-0553

Publication Date December 15, 2019
Published in Issue Year 2019 Volume: 9 Issue: 2

Cite

APA Zenk, H., Şenol, H., & Güner, F. (2019). Lunar Excursion Module Landing Control System Design with P, PI and PID Controllers. Karadeniz Fen Bilimleri Dergisi, 9(2), 390-405. https://doi.org/10.31466/kfbd.647211