Year 2020, Volume 10 , Issue 1, Pages 205 - 213 2020-06-15

Robotik Uygulamalar İçin Derin Öğrenme Tabanlı Nesne Tespiti ve Sınıflandırması
Deep Learning Based Object Detection and Classification for Robotic Applications

Ferdi ÖZBİLGİN [1] , Cengiz TEPE [2]


Görüntü içerisindeki nesnelerin tespit edilmesi ve sınıflandırılma uygulamaları her geçen gün artmaktadır. Bu çalışmada da robotik uygulamalarda da kullanılabilecek bir nesne tespiti ve sınıflandırılması uygulaması gerçekleştirilmiştir. Alexnet Evrişimsel Sinir Ağları (ESA) mimarisi ve Bölgesel Evrişimsel Sinir Ağları (B-ESA) algoritması ile gerçekleştirilen çalışmada yedi farklı nesne sınıfı seçilmiştir. Veri setindeki 684 eğitim verisi etiketlenerek ağın eğitilmesinde kullanılmıştır. 226 test görüntüsü eğitilen ağda test edilmesi sonucunda her sınıfa ait doğru tahmin değerleri ve toplam doğruluk değerleri bulunmuştur. Sınıflara ait tahminlerde en düşük %85,74 ve en yüksek %100 değerlerine ulaşılmıştır. Tüm test verileri için doğruluk değeri %93,81 bulunmuştur.

The detection and classification applications of the objects in the image are increasing day by day. In this study, an object detection and classification application, which can also be used in robotic applications, has been realized. Seven different object classes were selected in the study conducted with Alexnet Evolutionary Neural Networks (CNN) architecture and Regional Convolutional Neural Networks (R-CNN) algorithm. 684 training data in the data set were labelled and used to train the network. As a result of testing 226 test images in the trained network, correct predictive values and total accuracy values of each class were found. The lowest estimates of 85.74% and the highest 100% were reached in the estimates of the classes. The accuracy value was 93.81% for all test data.

  • Çoban, M., Cubukcu, B., Yüzgeç, U. 2019. Nesne Takibi Yapan Robot Uygulaması (RasPiBot) Object Tracking Robot Application (RasPiBot).
  • Do, T.-T., Nguyen, A., Reid, I. 2018. Affordancenet: An end-to-end deep learning approach for object affordance detection. 2018 IEEE international conference on robotics and automation (ICRA). IEEE. pp. 1-5.
  • Espinosa, J.E., Velastin, S.A., Branch, J.W. 2017. Vehicle detection using alex net and faster R-CNN deep learning models: a comparative study. International Visual Informatics Conference. Springer. pp. 3-15.
  • Fu, C.-Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C. 2017. Dssd: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659.
  • Griffin, G., Holub, A., Perona, P. 2007. Caltech-256 object category dataset.
  • Gu, S., Ding, L., Yang, Y., Chen, X. 2017. A new deep learning method based on AlexNet model and SSD model for tennis ball recognition. 2017 IEEE 10th International Workshop on Computational Intelligence and Applications (IWCIA). IEEE. pp. 159-164.
  • Han, X., Zhong, Y., Cao, L., Zhang, L. 2017. Pre-trained alexnet architecture with pyramid pooling and supervision for high spatial resolution remote sensing image scene classification. Remote Sensing, 9(8), 848.
  • Haque, M.F., Lim, H.-Y., Kang, D.-S. 2019. Object Detection Based on VGG with ResNet Network. 2019 International Conference on Electronics, Information, and Communication (ICEIC). IEEE. pp. 1-3.
  • Hariharan, B., Arbeláez, P., Girshick, R., Malik, J. 2014. Simultaneous detection and segmentation. European Conference on Computer Vision. Springer. pp. 297-312.
  • Hou, L., Wu, Q., Sun, Q., Yang, H., Li, P. 2016. Fruit recognition based on convolution neural network. 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). IEEE. pp. 18-22.
  • Huang, L., Ren, K., Fan, C., Deng, H. 2019. A Lite Asymmetric DenseNet for effective object detection based on convolutional neural networks (CNN). Optoelectronic Imaging and Multimedia Technology VI. International Society for Optics and Photonics. pp. 111871T.
  • Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T. 2014. Caffe: Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM international conference on Multimedia. pp. 675-678.
  • Kang, K., Li, H., Yan, J., Zeng, X., Yang, B., Xiao, T., Zhang, C., Wang, Z., Wang, R., Wang, X. 2017. T-cnn: Tubelets with convolutional neural networks for object detection from videos. IEEE Transactions on Circuits and Systems for Video Technology, 28(10), 2896-2907.
  • Karpathy, A., Fei-Fei, L. 2015. Deep visual-semantic alignments for generating image descriptions. Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3128-3137.
  • Khoreva, A., Benenson, R., Ilg, E., Brox, T., Schiele, B. 2019. Lucid data dreaming for video object segmentation. International Journal of Computer Vision, 127(9), 1175-1197.
  • Krizhevsky, A., Sutskever, I., Hinton, G.E. 2012. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems. pp. 1097-1105.
  • Kutlu, Ö. 2019. İnsansız hava aracı ile elde edilen görüntülerin derin öğrenme yöntemleri ile analizi.
  • Lee, S.-H., Yeh, C.-H., Hou, T.-W., Yang, C.-S. 2019. A Lightweight Neural Network Based on AlexNet-SSD Model for Garbage Detection. Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference. pp. 274-278.
  • Li, B. 2017. 3d fully convolutional network for vehicle detection in point cloud. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. pp. 1513-1518.
  • Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M. 2020. Deep learning for generic object detection: A survey. International journal of computer vision, 128(2), 261-318.
  • Lu, K., An, X., Li, J., He, H. 2017. Efficient deep network for vision-based object detection in robotic applications. Neurocomputing, 245, 31-45.
  • Lv, L., Tan, Y. 2019. Detection of cabinet in equipment floor based on AlexNet and SSD model. The Journal of Engineering, 2019(15), 605-608.
  • Tang, P., Wang, C., Wang, X., Liu, W., Zeng, W., Wang, J. 2019. Object detection in videos by high quality object linking. IEEE transactions on pattern analysis and machine intelligence.
  • Tomè, D., Monti, F., Baroffio, L., Bondi, L., Tagliasacchi, M., Tubaro, S. 2016. Deep convolutional neural networks for pedestrian detection. Signal processing: image communication, 47, 482-489.
  • Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.-C. 2019. Feelvos: Fast end-to-end embedding learning for video object segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 9481-9490.
  • Wang, B., Tang, S., Xiao, J.-B., Yan, Q.-F., Zhang, Y.-D. 2019. Detection and tracking based tubelet generation for video object detection. Journal of Visual Communication and Image Representation, 58, 102-111.
  • Zou, Z., Shi, Z., Guo, Y., Ye, J. 2019. Object detection in 20 years: A survey. arXiv preprint arXiv:1905.05055.
Primary Language tr
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0003-4946-7018
Author: Ferdi ÖZBİLGİN (Primary Author)
Institution: GİRESUN ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ
Country: Turkey


Orcid: 0000-0003-4065-5207
Author: Cengiz TEPE
Institution: ONDOKUZ MAYIS ÜNİVERSİTESİ
Country: Turkey


Dates

Publication Date : June 15, 2020

Bibtex @research article { kfbd734393, journal = {Karadeniz Fen Bilimleri Dergisi}, issn = {1309-4726}, eissn = {2564-7377}, address = {Giresun Üniversitesi Fen Bilimleri Enstitüsü Güre Yerleşkesi 28200 / Giresun}, publisher = {Giresun University}, year = {2020}, volume = {10}, pages = {205 - 213}, doi = {10.31466/kfbd.734393}, title = {Robotik Uygulamalar İçin Derin Öğrenme Tabanlı Nesne Tespiti ve Sınıflandırması}, key = {cite}, author = {Özbi̇lgi̇n, Ferdi and Tepe, Cengiz} }
APA Özbi̇lgi̇n, F , Tepe, C . (2020). Robotik Uygulamalar İçin Derin Öğrenme Tabanlı Nesne Tespiti ve Sınıflandırması . Karadeniz Fen Bilimleri Dergisi , 10 (1) , 205-213 . DOI: 10.31466/kfbd.734393
MLA Özbi̇lgi̇n, F , Tepe, C . "Robotik Uygulamalar İçin Derin Öğrenme Tabanlı Nesne Tespiti ve Sınıflandırması" . Karadeniz Fen Bilimleri Dergisi 10 (2020 ): 205-213 <https://dergipark.org.tr/en/pub/kfbd/issue/54926/734393>
Chicago Özbi̇lgi̇n, F , Tepe, C . "Robotik Uygulamalar İçin Derin Öğrenme Tabanlı Nesne Tespiti ve Sınıflandırması". Karadeniz Fen Bilimleri Dergisi 10 (2020 ): 205-213
RIS TY - JOUR T1 - Robotik Uygulamalar İçin Derin Öğrenme Tabanlı Nesne Tespiti ve Sınıflandırması AU - Ferdi Özbi̇lgi̇n , Cengiz Tepe Y1 - 2020 PY - 2020 N1 - doi: 10.31466/kfbd.734393 DO - 10.31466/kfbd.734393 T2 - Karadeniz Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 205 EP - 213 VL - 10 IS - 1 SN - 1309-4726-2564-7377 M3 - doi: 10.31466/kfbd.734393 UR - https://doi.org/10.31466/kfbd.734393 Y2 - 2020 ER -
EndNote %0 Karadeniz Fen Bilimleri Dergisi Robotik Uygulamalar İçin Derin Öğrenme Tabanlı Nesne Tespiti ve Sınıflandırması %A Ferdi Özbi̇lgi̇n , Cengiz Tepe %T Robotik Uygulamalar İçin Derin Öğrenme Tabanlı Nesne Tespiti ve Sınıflandırması %D 2020 %J Karadeniz Fen Bilimleri Dergisi %P 1309-4726-2564-7377 %V 10 %N 1 %R doi: 10.31466/kfbd.734393 %U 10.31466/kfbd.734393
ISNAD Özbi̇lgi̇n, Ferdi , Tepe, Cengiz . "Robotik Uygulamalar İçin Derin Öğrenme Tabanlı Nesne Tespiti ve Sınıflandırması". Karadeniz Fen Bilimleri Dergisi 10 / 1 (June 2020): 205-213 . https://doi.org/10.31466/kfbd.734393
AMA Özbi̇lgi̇n F , Tepe C . Robotik Uygulamalar İçin Derin Öğrenme Tabanlı Nesne Tespiti ve Sınıflandırması. KFBD. 2020; 10(1): 205-213.
Vancouver Özbi̇lgi̇n F , Tepe C . Robotik Uygulamalar İçin Derin Öğrenme Tabanlı Nesne Tespiti ve Sınıflandırması. Karadeniz Fen Bilimleri Dergisi. 2020; 10(1): 205-213.