Research Article
BibTex RIS Cite

İlerleyen Yanma Dalgalarının Evans Fonksiyonu İle Spektral Kararlılığı

Year 2021, Volume: 11 Issue: 2, 663 - 679, 15.12.2021
https://doi.org/10.31466/kfbd.982057

Abstract

Bu çalışmada başlangıçta bir miktar yakıt içeren gözenekli ortama hava enjekte edilerek geliştirilmiş petrol geri kazanımı modelinde ortaya çıkan yanma dalgaları incelenmiştir. Yanma modeli sıcaklık, oksijen ve yakıt olmak üzere üç bağımlı değişkenden oluşmaktadır. Sistemde sıcaklık ve oksijenin hızı aynı kabul edilip ters yönde ilerleyen yanma dalgaları göz önünde bulundurulmuştur. Modelimiz ters yönde ilerleyen bir yanma dalgası üzerinde linerize edilmiş ve linerize edilmiş bu operatörün esas spektrumu incelenmiştir. Spektral kararlılığın sağlanması için esas spektrumu sol yarı düzleme taşıyan bir ağırlık fonksiyonu elde edilmiştir. Ayrık spektrumu bulabilmek için Evans fonksiyonu kullanılmıştır. Sağ yarı düzlemde kararsız öz değer bulunmadığı nümerik olarak hesaplanmıştır. Böylece ele aldığımız ters yönde ilerleyen yanma dalgalarının spektral kararlılığı ispatlanmıştır.

References

  • Akkutlu, I.Y. ve Yortsos, Y.C. (2003). The Dynamics of in-situ combustion fronts in porous media. Combustion and Flame, 13, 229-247.
  • Alexander, J., Gardner, R. ve Jones, C. (1990). A topological invariant arising in the stability analsis of traveling waves. J. Reine Angew. Math., 410, 167-212.
  • Barker, B., Humpherys, J., Lyng, G. ve Lytle, J. (2017). Evans function computation for the stability of travelling waves. Philosophical Transactions Of The Royal Society A, 376(2117), 20170184.
  • Barker, B., Humpherys, J. ve Zumbrun K. (2009). STABLAB: a MATLAB-based numerical library for Evans function computation. http://www.impact.byu.edu/stablab/.
  • Barlas, G. (2020). Gözenekli ortamda ters yönde ilerleyen yanma dalgalarının varlığı. Yüksek Lisans Tezi, Harran Üniversitesi, Fen Bilimleri Enstitüsü, Şanlıurfa.
  • Chapiro, G., Mailybaev, A.A., de Souza, A.J., Marchesin, D. ve Bruining, J. (2012). Asymptotic approximation of long-time solution for low-temperature filtration combustion. Computational Geosciences, 16, 799-808.
  • Chapiro, G., Marchesin, D. ve Schecter, S. (2014). Combustion waves and Riemann solutions in light porous foam. Journal of Hyperbolic Differential Equations, 11, 295-328.
  • Chapiro, G. ve Senos, L. (2017). Riemann solutions for counterflow combustion in light porous foam. Computational and Applied Mathematics, 37, 1721-1736.
  • Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Oldeman, B., Paffenroth, R., Sandstede, B., Wang, X. ve Zhang, C. (2007). 2007 AUTO-07P: continuation and bifurcation software for ordinary differential equations. Concordia University, Montreal, Canada. http://indy.cs.concordia.ca/auto/.
  • Gubernov, V., Mercer, G.N., Sidhu, H.S. ve Weber, R.O. (2003). Evans function stability of combustion waves. Society For Industrial and Applied Mathematics, 63, 1259-1275.
  • Ozbag, F., Schecter, S. ve Chapiro, G. (2018). Traveling waves in a simplified gas–solid combustion model in porous media. Adv. Differential Equations, 23, 409-454.
  • Ozbag, F. ve Schecter, S. (2018). Stability of conmbustion waves in a simplified gas–solid combustion model in porous media. Philosophical Transactions A, 376(2117), 20170185.
  • Ozbag, F. (2016). Stability analysis of combustion waves in porous media. Doctoral dissertation, North Carolina State University, USA.
  • Sandstede, B. (2002). Stability of traveling waves. Handbook of dynamical systems, 2, 983-1055.

Spectral Stability of Traveling Combustion Waves By Evans Function

Year 2021, Volume: 11 Issue: 2, 663 - 679, 15.12.2021
https://doi.org/10.31466/kfbd.982057

Abstract

In this research combustion waves that appears in a model of enhanced oil recovery by injecting air into a porous media which has some initial fuel are studied. Combustion model involves three dependent variables temperature, oxygen and fuel. Speed of temperature and oxygen are assumed same and counterflow combustion waves are considered. The model is linearized at a counterflow combustion wave and the essential spectrum of the operator of linearized system is investigated. In order to have the spectral stability, a weight function is determined to move the essential spectrum to the left half plane. Evans function is utilized to find point spectrum. Numerical calculation is performed to show that no unstable eigenvalues in the right half plane. Therefore spectral stability of counterflow combustion waves is proved.

References

  • Akkutlu, I.Y. ve Yortsos, Y.C. (2003). The Dynamics of in-situ combustion fronts in porous media. Combustion and Flame, 13, 229-247.
  • Alexander, J., Gardner, R. ve Jones, C. (1990). A topological invariant arising in the stability analsis of traveling waves. J. Reine Angew. Math., 410, 167-212.
  • Barker, B., Humpherys, J., Lyng, G. ve Lytle, J. (2017). Evans function computation for the stability of travelling waves. Philosophical Transactions Of The Royal Society A, 376(2117), 20170184.
  • Barker, B., Humpherys, J. ve Zumbrun K. (2009). STABLAB: a MATLAB-based numerical library for Evans function computation. http://www.impact.byu.edu/stablab/.
  • Barlas, G. (2020). Gözenekli ortamda ters yönde ilerleyen yanma dalgalarının varlığı. Yüksek Lisans Tezi, Harran Üniversitesi, Fen Bilimleri Enstitüsü, Şanlıurfa.
  • Chapiro, G., Mailybaev, A.A., de Souza, A.J., Marchesin, D. ve Bruining, J. (2012). Asymptotic approximation of long-time solution for low-temperature filtration combustion. Computational Geosciences, 16, 799-808.
  • Chapiro, G., Marchesin, D. ve Schecter, S. (2014). Combustion waves and Riemann solutions in light porous foam. Journal of Hyperbolic Differential Equations, 11, 295-328.
  • Chapiro, G. ve Senos, L. (2017). Riemann solutions for counterflow combustion in light porous foam. Computational and Applied Mathematics, 37, 1721-1736.
  • Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Oldeman, B., Paffenroth, R., Sandstede, B., Wang, X. ve Zhang, C. (2007). 2007 AUTO-07P: continuation and bifurcation software for ordinary differential equations. Concordia University, Montreal, Canada. http://indy.cs.concordia.ca/auto/.
  • Gubernov, V., Mercer, G.N., Sidhu, H.S. ve Weber, R.O. (2003). Evans function stability of combustion waves. Society For Industrial and Applied Mathematics, 63, 1259-1275.
  • Ozbag, F., Schecter, S. ve Chapiro, G. (2018). Traveling waves in a simplified gas–solid combustion model in porous media. Adv. Differential Equations, 23, 409-454.
  • Ozbag, F. ve Schecter, S. (2018). Stability of conmbustion waves in a simplified gas–solid combustion model in porous media. Philosophical Transactions A, 376(2117), 20170185.
  • Ozbag, F. (2016). Stability analysis of combustion waves in porous media. Doctoral dissertation, North Carolina State University, USA.
  • Sandstede, B. (2002). Stability of traveling waves. Handbook of dynamical systems, 2, 983-1055.
There are 14 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Fatih Özbağ 0000-0002-5456-4261

Burcu Ceylan Kuru 0000-0001-5839-8128

Publication Date December 15, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Özbağ, F., & Ceylan Kuru, B. (2021). İlerleyen Yanma Dalgalarının Evans Fonksiyonu İle Spektral Kararlılığı. Karadeniz Fen Bilimleri Dergisi, 11(2), 663-679. https://doi.org/10.31466/kfbd.982057